Sistemas de ecuaciones lineales – Método de reducción

Un sistema de dos ecuaciones lineales con dos incógnitas está formado por un par de ecuaciones de primer grado con dos incógnitas.

Los dos sistemas de ecuaciones que aparecen en la imagen inicial serían un ejemplo de sistemas de ecuaciones lineales, y las incógnitas serían xy.

A este tipo de ecuaciones que forman el sistema se las denomina lineales porque su representación gráfica en los ejes de coordenadas X e Y es una línea recta.

Resolver un sistema de ecuaciones consiste en obtener el par de valores de x y de y (de las incógnitas) que verifican las dos ecuaciones del sistema a la vez, es decir, que al sustituir las incógnitas por dichos valores se cumplen las dos igualdades.

Para resolver un sistema de ecuaciones se pueden utilizar distintos métodos: el método gráfico, el método de sustitución, el método de igualación y el método de reducción.

En el siguiente vídeo vamos a aprender a resolver sistemas de ecuaciones lineales por el método de reducción.

Lo vamos a ver todo paso a paso, con todo detalle, para que se entienda perfectamente. Además veremos un ejemplo de sistema de ecuaciones lineales con infinitas soluciones, y otro ejemplo sin solución, para que no tengáis ningún problema y sepáis qué hacer cuando os aparezcan.

Leer más

Sistemas de ecuaciones lineales – Método de igualación

Un sistema de dos ecuaciones lineales con dos incógnitas está formado por un par de ecuaciones de primer grado con dos incógnitas.

El sistema de ecuaciones que aparece en la imagen inicial sería un ejemplo de sistema de ecuaciones lineales, y las incógnitas serían xy.

A este tipo de ecuaciones que forman el sistema se las denomina lineales porque su representación gráfica en los ejes de coordenadas X e Y es una línea recta.

Resolver un sistema de ecuaciones consiste en obtener el par de valores de x y de y (de las incógnitas) que verifican las dos ecuaciones del sistema a la vez, es decir, que al sustituir las incógnitas por dichos valores se cumplen las dos igualdades.

Para resolver un sistema de ecuaciones se pueden utilizar distintos métodos: el método gráfico, el método de sustitución, el método de igualación y el método de reducción.

En el siguiente vídeo vamos a aprender a resolver sistemas de ecuaciones lineales por el método de igualación.

Lo vamos a ver todo paso a paso, e incluso aprenderemos a comprobar también la solución obtenida, y veremos también un ejemplo de sistema de ecuaciones sin solución. Vais a ver que no es complicado.

Leer más

Sistemas de ecuaciones lineales – Método de sustitución

Un sistema de dos ecuaciones lineales con dos incógnitas está formado por un par de ecuaciones de primer grado con dos incógnitas.

El sistema de ecuaciones que aparece en la imagen inicial sería un ejemplo de sistema de ecuaciones lineales, y las incógnitas serían xy.

A este tipo de ecuaciones que forman el sistema se las denomina lineales porque su representación gráfica en los ejes de coordenadas X e Y es una línea recta.

Resolver un sistema de ecuaciones consiste en obtener el par de valores de x y de y (de las incógnitas) que verifican las dos ecuaciones del sistema a la vez, es decir, que al sustituir las incógnitas por dichos valores se cumplen las dos igualdades.

Para resolver un sistema de ecuaciones se pueden utilizar distintos métodos: el método gráfico, el método de sustitución, el método de igualación y el método de reducción.

En el siguiente vídeo vamos a aprender a resolver sistemas de ecuaciones lineales por el método de sustitución.

Lo vamos a ver todo paso a paso, e incluso aprenderemos a comprobar también la solución obtenida. Vais a ver que no es complicado.

Leer más

El número 410256793: ¡Un número primo borrable!

Hay muchos lápices y muchas gomas de borrar, pero los míos son bastante especiales: Mi lápiz escribe números primos y mi goma los borra, pero no de cualquier manera.

¿No te crees que sean tan especiales?

Te invito a que veas el siguiente vídeo y después me cuentas.

Leer más

El número 5882353 ¡Quizás se convierta en tu nuevo número favorito!

Os voy a presentar un número bastante particular:

El número 5882353.

¿Qué tiene de especial este número?

Os invito a que lo averigüéis en el siguiente vídeo y, quien sabe, puede que pase a ser vuestro nuevo número favorito, o al menos uno de ellos.

Leer más

A %d blogueros les gusta esto: