Un truco para calcular el cuadrado de números que terminan en cinco

Como dice el título de la entrada, vamos a ver un truco para calcular el cuadrado de números terminados en cinco, como por ejemplo 252, 552

Truco para cuadrados de números terminados en cinco

El truco no es más que una forma rápida de obtener el resultado sin necesidad de tener que realizar la multiplicación completa del número en cuestión por si mismo. Con este truco tardamos apenas 3 segundos en calcular el cuadrado.

¿Y en qué consiste?

Lo único que hay que hacer es multiplicar el número que está delante del cinco (por ejemplo, en 152 sería el 1, y en 1052 sería el 10) por el número que le seguiría, y al resultado añadirle a la derecha veinticinco.

Así, en el caso de 152 se multiplicaría 1 por 2 y se añadiría 25, quedando 225; en 1052 multiplicaríamos 10 por 11 y añadiríamos 25, obteniendo así 11.025.

Pero mejor te lo cuento todo en el siguiente vídeo, y además te desvelo el secreto de este truco, es decir, por qué funciona:


¿Te ha gustado? No te pierdas ninguna publicación del blog, regístrate y recibirás los avisos por correo electrónico. Sabrás al instante cuándo se ha publicado algo nuevo.

20 comentarios en «Un truco para calcular el cuadrado de números que terminan en cinco»

  1. Yo lo que necesito saber es el por qué sucede esto, me ha quedado casi todo claro menos el segundo paso, de descomponerlo como suma de las decenas y de las unidades quedando a5=a.10+5. Podrías explicármelo brevemente, sería de mucha ayuda, gracias!

    Responder
    • Hola Alicia.
      El dígito (o dígitos) representado con la a está ocupando la posición de las decenas, y el 5 la posición de las unidades.
      En nuestro sistema de numeración decimal (base 10) cualquier número se puede escribir utilizando como base aritmética las potencias del número diez, por ejemplo:
      3527 = 3·1000 + 5·100 + 2·10 + 7·1 = 3·10^3 + 5·10^2 + 2·10^1 + 7·10^0

      Si utilizamos solo las unidades y las decenas, el número anterior se podría expresar como:
      3527 = 352·10 + 7·1 (tiene 352 decenas y 1 unidad)

      Y, de forma análoga, cualquier número terminado en 5 (de la forma a5, donde a puede ser el número de decenas que queramos considerar) se puede expresar como:
      a5 = a·10 + 5 (tiene a decenas y 5 unidades

      Por ejemplo:
      25 = 2·10 + 5
      65 = 6·10 + 5
      375 = 37·10 + 5
      1485 = 148·10 + 5

      Espero haberte podido aclarar la duda.
      Un saludo.

      Responder
  2. El «truco» es válido para cualquier multiplicación de números de la misma decena cuyas unidades sumen 10.
    Por ejemplo:
    26×24= 20×30+ 6×4= 624
    33×37= 30×40+ 3×7= 1221

    La explicación es idéntica a la anterior.

    Responder
  3. Pingback: Bitacoras.com

Responder a Zul Hernández Cancelar respuesta

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

A %d blogueros les gusta esto: