Nuevo récord de cálculo de decimales del número Pi… 62,8 billones

El pasado sábado, 14 de agosto de 2021, se batió el récord mundial de cálculo de decimales del número Pi, estableciéndolo en 62,8 billones de decimales (exactamente 62 831 853 071 750 decimales).

Después de 108 días, 9 horas, 4 minutos y 19,2 segundos, la computadora de alto rendimiento del Centro de Análisis, Visualización y Simulación de Datos (DAViS) perteneciente a la Universidad de Ciencias Aplicadas de los Grisones (FHGR) en Suiza, superó el antiguo récord mundial de 50 billones de decimales en 12,8 billones de nuevas cifras.

Lo impresionante de este nuevo récord no son solo los 12,8 billones de nuevos decimales calculados, sino que, aunque pueda parecer mucho tiempo los algo más de 3 meses y medio que se han necesitado, es casi dos veces más rápido que el récord que Google estableció en 2019, y alrededor de 3,5 veces más rápido que el último récord mundial de 2020.

Fuente de la imagen

Por cierto, los últimos 10 decimales conocidos del número Pi son:

7817924264

En la imagen anterior podéis ver los últimos 96 decimales (Last Decimal Digits: Pi).

Como anécdota, que da una idea de la magnitud de las cifras decimales calculadas, os diré que el número (escrito en base hexadecimal, que es la base con la que se va obteniendo por primera vez y que después se convierte a decimal) en un formato comprimido utiliza unos 24 TB de espacio en disco (si no estuviera comprimido ocuparía 48 TB). Para almacenarlo en base decimal se han necesitado 63 archivos comprimidos.

Leer más

Posición relativa de dos rectas en el plano

En el plano, dos rectas pueden ser: Secantes (tienen distinta pendiente y se cortan en un punto), paralelas (tienen la misma pendiente y pasan por distintos puntos, no cortándose nunca), o coincidentes (tienen la misma pendiente y pasan por los mismos puntos).

Estudiar la posición relativa de dos rectas en el plano consiste por lo tanto en determinar, a partir de sus ecuaciones, si dos rectas son secantes, paralelas o coincidentes.

Podemos hacerlo de distintas formas. Nosotros vamos a hacerlo aquí utilizando dos procedimientos diferentes: A partir de la ecuación explícita de las rectas, y a partir de su ecuación general.

En este primer vídeo te explico cómo estudiar la posición relativa de dos rectas en el plano utilizando su ecuación explícita:

En este segundo vídeo aprenderemos a estudiar la posición relativa de dos rectas en el plano utilizando su ecuación general:

Leer más

El cubo de Rubik: Juego, Matemáticas y Educación

A mediados de la década de 1970,  el escultor y profesor de arquitectura húngaro Erno Rubik trabajaba en el Departamento de Diseño de Interiores en la Academia de Artes y Trabajos Manuales Aplicados en Budapest.

Fue entonces cuando, intentando resolver el problema estructural de lograr mover las partes de una estructura independientemente sin que el mecanismo entero de la estructura se desmoronara, al mezclar el cubo que había ideado e intentar volverlo a la posición original, se dio cuenta de que había creado un rompecabezas.

Tras el éxito que tuvo su cubo entre sus amigos y sus alumnos, Erno Rubik decidió patentarlo, obteniendo una patente húngara en 1975, y comenzando a venderse como rompecabezas en Hungría, y con el nombre de cubo mágico.

En 1980 empezó a venderse internacionalmente, mediante la compañía Ideal Toys y ya con el nombre de cubo de Rubik, convirtiéndose con el tiempo en el rompecabezas más vendido del mundo. Porque, ¿quién no ha tenido en sus manos alguna vez un cubo de Rubik?

 

Las matemáticas del cubo de Rubik

La primera pregunta que nos puede surgir al ver un cubo de Rubik clásico (de 3 x 3 x 3) es:

¿De cuántas formas diferentes se puede mezclar un cubo de Rubik?

Leer más

Extraer factor común en un polinomio

Si todos los términos de un polinomio tienen factores comunes, se puede expresar el polinomio como el producto de un monomio (factor común) por otro polinomio que resulta de haber extraído ese factor común en cada uno de los términos del polinomio inicial.

A este procedimiento se lo conoce como extraer factor común en un polinomio.

¿Cómo se hace?

Te lo explico todo con detalle y con bastantes ejemplos resueltos en el siguiente vídeo:

Leer más

¿Cómo suena el número e?

La constante matemática e es uno de los números irracionales más importantes.​

Aparece en muchas ramas de las Matemáticas, ya que es la base de los logaritmos naturales y forma parte de muchos problemas.

Se conoce también como número de Euler o constante de Napier, y fue reconocido y utilizado por primera vez por el matemático escocés John Napier, quien introdujo el concepto de logaritmo en el cálculo matemático.

Es un número fundamental en el cálculo y en el análisis matemático.

Como número irracional que es, no se puede expresar mediante una fracción de dos números enteros. Se trata, por lo tanto, de un número con infinitas cifras decimales, pero que no es periódico.

Además, igual que π, es un número trascendente, es decir, que no puede ser raíz de ecuación algebraica alguna con coeficientes racionales.

​El valor de e en sus primeras cifras decimales es:

2,71828182845904523536028747135266249775724709…

Pero bien, el objeto de esta publicación no es tanto hablar sobre el número e sino saber cómo podría sonar.

Sí, sonar. Habéis leído bien.

Para saberlo, como ya hice en las entradas ¿Cómo suena π? , ¿Cómo suena τ? y ¿Cómo suena φ?, lo mejor es mostraros el trabajo del músico Michael Blake, que compuso una melodía con los primeros dígitos del número e y utilizando distintos instrumentos a la vez.

Os dejo que la escuchéis y me decís qué os parece.


¿Te ha gustado? No te pierdas ninguna publicación del blog, regístrate y recibirás los avisos por correo electrónico. Sabrás al instante cuándo se ha publicado algo nuevo.

La geometría con la que atrapan su pesca las ballenas jorobadas

Las ballenas jorobadas utilizan distintas técnicas de caza. Se arrojan con la boca abierta a un grupo de peces o plancton y tratan de recoger la mayor cantidad de agua posible para luego filtrar las presas con sus barbas.

Una de esas técnicas consiste en crear redes de burbujas para atrapar a los peces y evitar que se escapen. También cazan aturdiendo a los peces con golpes de cola o de sus aletas pectorales.

Representación gráfica del pastoreo pectoral vertical de una ballena jorobada. Las presas se indican en amarillo. (a) La ballena despliega una red de burbujas en espiral ascendente para acorralar a sus presas y establecer la primera barrera; luego, las aletas pectorales se extienden para formar una «V» alrededor de la boca abierta (representada por flechas azules), creando una segunda barrera física. (b) Cambio en el ángulo de ataque (α) de 0° a 90° formación pectoral vertical. (c) Comparación de la posición del cuerpo y las aletas antes y después. Gráfico de Kyle Kosma. (Fuente)

La táctica de las ballenas consiste en situarse debajo de los bancos de peces y empezar a dibujar espirales exhalando aire. Las burbujas acaban formando una barrera que obliga a las presas a concentrarse cada vez más.

Al final, cuando éstas se sitúan cerca de la superficie, utilizan sus aletas pectorales para acercar las presas a su boca y capturarlas.

Representaciones gráficas del pastoreo pectoral horizontal de una ballena jorobada. Las presas se indican en amarillo. Etapa A: Despliegue de una red de burbujas en espiral ascendente para acorralar a la presa y establecer la primera barrera. Etapa B: Movimiento del pectoral izquierdo dentro y fuera del agua, a lo largo del borde de la barrera de la red de burbujas, creando una barrera secundaria. Etapa C: Embestida para engullir a la presa. Gráfico de Kyle Kosma. (Fuente)

En el siguiente vídeo, de solo unos segundos, se puede ver la red espiral de burbujas y cómo aparece la ballena desde su zona central.

Leer más

Números narcisistas

Como indico en la imagen anterior, un número narcisista es aquel que es igual a la suma de sus dígitos elevados a la potencia de su número de cifras.

Leer más

Dividir entre cero…

En más de una ocasión habrás oído, o tu profesora o profesor de matemáticas te habrá dicho, que «no se puede dividir entre cero» (como desea Aladdín poder hacer en la viñeta anterior), pero también habrás escuchado que «un número dividido entre cero da infinito«.

¿Entonces?

¿En qué quedamos?

¿Se puede o no se puede?

Leer más

¿Cómo saber si un triángulo es acutángulo, rectángulo u obtusángulo a partir de sus lados?

Vamos a ver un ejemplo.

Leer más

Números de Munchausen

Leer más

A %d blogueros les gusta esto: