2022 es un número interprimo, y además suma de dos primos consecutivos

Leer más

2022 es un número educado o cortés

Un número educado o número cortés (en inglés polite number) es un número entero positivo que se puede escribir como la suma de dos o más números enteros positivos consecutivos.

Los números enteros positivos que no cumplen dicha condición se denominan descorteses.​ Los números descorteses son únicamente las potencias de dos, y los números corteses son los números naturales que no son potencias de dos.

Leer más

¡Feliz 2022! ¡Feliz año Harshad!

Leer más

Nuevo récord de cálculo de decimales del número Pi… 62,8 billones

El pasado sábado, 14 de agosto de 2021, se batió el récord mundial de cálculo de decimales del número Pi, estableciéndolo en 62,8 billones de decimales (exactamente 62 831 853 071 750 decimales).

Después de 108 días, 9 horas, 4 minutos y 19,2 segundos, la computadora de alto rendimiento del Centro de Análisis, Visualización y Simulación de Datos (DAViS) perteneciente a la Universidad de Ciencias Aplicadas de los Grisones (FHGR) en Suiza, superó el antiguo récord mundial de 50 billones de decimales en 12,8 billones de nuevas cifras.

Lo impresionante de este nuevo récord no son solo los 12,8 billones de nuevos decimales calculados, sino que, aunque pueda parecer mucho tiempo los algo más de 3 meses y medio que se han necesitado, es casi dos veces más rápido que el récord que Google estableció en 2019, y alrededor de 3,5 veces más rápido que el último récord mundial de 2020.

Fuente de la imagen

Por cierto, los últimos 10 decimales conocidos del número Pi son:

7817924264

En la imagen anterior podéis ver los últimos 96 decimales (Last Decimal Digits: Pi).

Como anécdota, que da una idea de la magnitud de las cifras decimales calculadas, os diré que el número (escrito en base hexadecimal, que es la base con la que se va obteniendo por primera vez y que después se convierte a decimal) en un formato comprimido utiliza unos 24 TB de espacio en disco (si no estuviera comprimido ocuparía 48 TB). Para almacenarlo en base decimal se han necesitado 63 archivos comprimidos.

Leer más

María Gaetana Agnesi nació un 16 de mayo

Para saber más de esta gran matemática:

María Gaetana Agnesi (Milán, 1718-1799 d.C.)

Leer más

¿Sabías que…? El número 4332221111

Leer más

¿Sabías que…? 2021 es un número semiprimo y libre de cuadrados… ¡Feliz 2021!

Leer más

¿Sabías que…? Avispas que saben contar

Leer más

La geometría con la que atrapan su pesca las ballenas jorobadas

Las ballenas jorobadas utilizan distintas técnicas de caza. Se arrojan con la boca abierta a un grupo de peces o plancton y tratan de recoger la mayor cantidad de agua posible para luego filtrar las presas con sus barbas.

Una de esas técnicas consiste en crear redes de burbujas para atrapar a los peces y evitar que se escapen. También cazan aturdiendo a los peces con golpes de cola o de sus aletas pectorales.

Representación gráfica del pastoreo pectoral vertical de una ballena jorobada. Las presas se indican en amarillo. (a) La ballena despliega una red de burbujas en espiral ascendente para acorralar a sus presas y establecer la primera barrera; luego, las aletas pectorales se extienden para formar una «V» alrededor de la boca abierta (representada por flechas azules), creando una segunda barrera física. (b) Cambio en el ángulo de ataque (α) de 0° a 90° formación pectoral vertical. (c) Comparación de la posición del cuerpo y las aletas antes y después. Gráfico de Kyle Kosma. (Fuente)

La táctica de las ballenas consiste en situarse debajo de los bancos de peces y empezar a dibujar espirales exhalando aire. Las burbujas acaban formando una barrera que obliga a las presas a concentrarse cada vez más.

Al final, cuando éstas se sitúan cerca de la superficie, utilizan sus aletas pectorales para acercar las presas a su boca y capturarlas.

Representaciones gráficas del pastoreo pectoral horizontal de una ballena jorobada. Las presas se indican en amarillo. Etapa A: Despliegue de una red de burbujas en espiral ascendente para acorralar a la presa y establecer la primera barrera. Etapa B: Movimiento del pectoral izquierdo dentro y fuera del agua, a lo largo del borde de la barrera de la red de burbujas, creando una barrera secundaria. Etapa C: Embestida para engullir a la presa. Gráfico de Kyle Kosma. (Fuente)

En el siguiente vídeo, de solo unos segundos, se puede ver la red espiral de burbujas y cómo aparece la ballena desde su zona central.

Leer más

Leonhard Euler, el mayor matemático del Siglo XVIII, nació un 15 de abril

Leer más

A %d blogueros les gusta esto: