El Triángulo de Reuleaux

Además de un círculo, ¿qué otra forma puede tener una tapa de alcantarilla para que no caiga a través de un agujero?

Parece una pregunta cuando menos curiosa, pues es muy probable que jamás nos la hayamos planteado… vamos, que pensamos en otras muchas cosas antes que en esto.No obstante, si intentásemos contestar a la pregunta, seguramente lo primero que se nos ocurriría sería recurrir a los polígonos (triángulo, cuadrado, pentágono…).

 Hay que tener en cuenta que la figura que buscamos debe tener como ancho máximo el ancho del agujero, para que encaje a la perfección.

 Pero ¿qué ocurriría con las tapas con forma de polígono?  En los polígonos la anchura varía (por ejemplo, en un cuadrado, si medimos de vértice a vértice opuesto la anchura es la de la diagonal, y si medimos de un vértice a otro vértice consecutivo la anchura es la del lado, que es menor), por lo que si colocamos las tapas con forma poligonal por su ancho menor se podrían colar por el agujero.

 Estamos buscando, por tanto, una curva cerrada que tenga anchura constante, pero… ¿existe otra que no sea la circunferencia? Pues bien, El triángulo de Reuleaux también tiene la particularidad de ser una curva de anchura constante.

200px-Rouleaux_triangle_Animation

Leer más

Acertijo: Triángulo de números

Coloca en los círculos los números del 1 al 9, sin repetirlos, de manera que sumándo los números de cada uno de los lados del triángulo se obtenga 20.

triangulo 1a9

SOLUCIÓN a ¿Cuántos cuadrados hay dibujados en la imagen?

El problema planteado es el siguiente:

Un consejo y a la vez una pista: para dar con el resultado, lo mejor es contar los cuadrados por tamaño.

Veamos la SOLUCIÓN

Leer más

Los cuadrados mágicos III (Cuadrados geomágicos)

Continuando con los cuadrados mágicos, de los que ya publiqué dos entradas, Los cuadrados mágicos I (15/02/2014) y Los cuadrados mágicos II (4/03/2014), os acerco ahora esta tercera entrada sobre algo que he visto recientemente y que me parece muy interesante, pues le da una vuelta más a los ya de por si curiosos cuadrados mágicos: Los cuadrados mágicos geométricos.

cuadrado geomagico

La imagen muestra un cuadrado mágico geométrico o cuadrado geomágico.

De manera similar a los cuadrados mágicos, en los que al sumar todos los números de una fila, columna o diagonal siempre obtenemos el mismo resultado (número mágico), en este cuadrado geomágico si juntamos todas las piezas de una fila, columna o diagonal obtenemos siempre una figura del mismo tamaño y forma.

Los cuadrados geomágicos fueron inventados en 2001 por el ingeniero electrónico británico Lee Sallows, aficionado a las matemáticas recreativas.

A continuación os pongo algunos ejemplos más de cuadrados geomágicos sacados de su propia página.

Leer más

El criptograma

Averigua el valor de cada una de las letras (C, D, H, O y S), teniendo en cuenta que cada una de ellas tiene un valor diferente, y de manera que se cumpla la siguiente suma:

criptograma
A %d blogueros les gusta esto: