Raíces o ceros de un polinomio

Las raíces de un polinomio P(x), también conocidas como ceros del polinomio, son los valores de x que hacen que el valor numérico del polinomio sea igual a cero, es decir, las soluciones de la ecuación P(x) = 0.

Calcular las raíces de un polinomio P(x) equivale, por lo tanto, a resolver la ecuación P(x) = 0.

Así, por ejemplo, las raíces del polinomio P(x) = 2x3 + 8x2 – 2x – 8, serán las soluciones de la ecuación:

2x3 + 8x2 – 2x – 8 = 0

Por cierto, en este caso concreto, dichas raíces serían: x = 1, x = -1, x = -4.

Si se sustituye en la expresión del polinomio P(x) cada x que aparece por estos valores, es decir, se calcula el valor numérico del polinomio para x = 1, x = -1, x = -4, se obtiene como resultado cero.

En los dos siguientes vídeos vamos a ver cómo se calculan las raíces de polinomios. Al mismo tiempo estaremos aprendiendo a resolver ecuaciones de grado mayor que 2.

Veremos primero una serie de cosas importantes a tener en cuenta a la hora de intentar calcular las raíces de un polinomio, y también las distintas herramientas matemáticas con las que contamos para hacerlo: Extraer factor común, Regla de Ruffini, Teorema del resto y del factor, resolver ecuaciones de segundo grado

Leer más

Miedo a las multiplicaciones

Leer más

Logaritmos con emojis

¿Recuerdas la publicación del blog sobre los logaritmos?

En uno de los vídeos del Canal de Youtube de MatematicasCercanas que aparecían en esa publicación hablábamos de las propiedades de los logaritmos.

Pues aquí te traigo las propiedades de los logaritmos que vimos… ¡Utilizando emojis!

Y si quieres puedes desayunar todas las mañanas con esta taza, ya que si pinchas en la imagen la puedes ver en La Tienda de MatematicasCercanas.

Si eres estudiante seguro que no se te van a olvidar ya.

Pero igual lo que te gustaría es llevarlas puestas.

Si eres profesor, para ayudar a tus alumnos (te aseguro, por experiencia propia, que eso de que el profesor lo lleve en una camiseta les llama mucho la atención y se fijan más).

Si eres alumno, para ser tú mismo una chuleta y recordar las propiedades de los logaritmos cada vez que te mires en un espejo.

¿Qué cómo es eso de llevarlas puestas?

Pues en una camiseta o sudadera…

Leer más

Logaritmos

Los logaritmos se utilizan, entre otras muchas cosas, para determinar la antigüedad de restos vegetales y animales cuando se utiliza el método del carbono 14.

Se utilizan también en psicología en la ley de Weber-Fechner.

Se utilizan en la escala de Richter para reflejar la energía que se desprende en un terremoto. La intensidad de un sismo se calcula en concreto utilizando logaritmos neperianos.

En Estadística se suelen aplicar en el crecimiento de la población, cuando la población crece muy rápidamente (exponencialmente).

También se utilizan en el experimento psicológico de Stenbeg.

Tienen también aplicaciones en la Música, en Topología, en Química por ejemplo para medir el pH de un producto.

En Astronomía los logaritmos son muy usuales, y se utilizan para poder medir el brillo y la magnitud de las estrellas.

En definitiva, todo lo que sean números grandes, se maneja mejor aplicando logaritmos. Pero…

¿Qué es un logaritmo?

Sea a un número positivo y distinto de 1, el logaritmo en base a de un número positivo N (argumento) es el exponente al que hay que elevar dicha base a para obtener N.

loga = ⇔  abN

Así, por ejemplo, el log2 8 es 3, ya que 2 hay que elevarlo a 3 para obtener 8.

log2 8 = 3  ⇔  23 = 8

Calcular un logaritmo puede ser relativamente sencillo, aunque hay también logaritmos que no existen en los números reales. En el siguiente vídeo vamos a aprender a calcular un logaritmo utilizando la definición de logaritmo, veremos bastantes ejemplos y, además, logaritmos especiales como el logaritmo decimal y el logaritmo neperiano. Aprenderemos y deduciremos también los casos en los que no existe logaritmo.

En el vídeo anterior hemos aprendido a calcular logaritmos a partir de la definición de logaritmo, siendo la X, lo que queremos calcular, el valor del logaritmo. Sin embargo en ocasiones se nos pide calcular la base o el argumento del logaritmo.

Para hacerlo, utilizamos también la definición de logaritmo. En el siguiente vídeo vamos a aprender a hacerlo, y con bastantes ejemplos diferentes.

Los logaritmos tienen una serie de propiedades que, lógicamente, viendo la propia definición de logaritmo, están basadas en las propiedades de las potencias.

Utilizando las propiedades de los logaritmos podemos, por ejemplo, facilitar cálculos ya que se rebaja en un escalón la dificultad de las operaciones, transformando potencias en productos, y productos y cocientes en sumas y restas, respectivamente. De ahí su utilidad.

Aplicando las propiedades de las potencias, también podemos calcular un logaritmo a partir de otros logaritmos de valor conocido.

Y podemos también transformar sumas y restas de logaritmos en un único logaritmo. Esto es precisamente lo que utilizaremos para resolver ecuaciones logarítmicas.

En el siguiente vídeo, vamos a aprender las propiedades de los logaritmos, y vamos a resolver dos tipos de ejercicios diferentes utilizando dichas propiedades.

Leer más

Racionalización de fracciones

Cuando trabajamos con fracciones, en determinadas operaciones como la suma o resta de fracciones con distinto denominador, nos interesa que los denominadores sean números naturales, ya que de lo contrario nos resulta complicado hacer cosas como reducir las fracciones a mínimo común denominador.

En ocasiones las fracciones que tenemos contienen radicales en su denominador, y necesitamos eliminarlos.

Racionalizar una fracción consiste precisamente en eso, en realizar operaciones sobre la fracción original de manera que se obtengan fracciones equivalentes en las que ya no haya radicales en el denominador.

Para racionalizar una fracción utilizaremos básicamente dos procedimientos, dependiendo de si en el denominador hay solo un radical o si se trata de una suma o una resta (binomio) con radicales.

En los dos siguientes vídeos vamos a aprender a racionalizar fracciones en cada una de esas dos situaciones. Lo veremos paso a paso, explicando primero en qué nos vamos a basar para hacerlo, y resolveremos varios ejemplos con algunas diferencias entre ellos.

Leer más

Operaciones combinadas con potencias de base una fracción

Seguimos con los ejercicios de operaciones combinadas con potencias, y en esta ocasión vamos a aprender a resolver ejercicios de operaciones combinadas en los que aparecen potencias cuya base es una fracción.

Además, aparecerán también potencias de base una fracción y con exponente negativo.

Os voy a explicar cómo se debe resolver este tipo de ejercicios y lo vamos a ver paso a paso en los dos siguientes vídeos.

Leer más

Un dolor «irracional» y «trascendente»

Leer más

Multiplicación y división de números enteros

Después de ver la suma y resta de números enteros, continuamos con las operaciones con números enteros y vamos a aprender ahora a multiplicar y dividir números enteros.

Multiplicar y dividir números enteros es bastante sencillo. Por un lado tenemos que multiplicar o dividir, según sea la operación que estamos haciendo, los valores absolutos de los números y, para saber el signo del resultado de la operación, tenemos que utilizar la regla de los signosley de los signos.

Pero mejor que leer una explicación es verla y escucharla.

Por eso en el siguiente vídeo voy a explicar primero cómo funciona la regla de los signos, y vamos a resolver bastantes ejemplos de multiplicaciones y divisiones de números enteros, explicando todo paso a paso.

También veremos ejemplos en los que no aparezcan todos los números enteros entre paréntesis, y otros en los que no aparezca el signo de operación entre los paréntesis o entre números y paréntesis.

Por último, aprenderemos también a resolver ejercicios de multiplicaciones y divisiones combinadas de números enteros.

Te dejo con el vídeo:

Leer más

Suma y resta de números enteros

Una de las primeras y mayores dificultades que se les presenta a los alumnos es aprender a sumar y restar números enteros, ya que el salto de los números naturales a los enteros no suele ser sencillo.

Eso de que quitemos más de lo que había, o que al sumar números se obtengan resultados negativos va en contra de la idea inicial que se tiene de las sumas.

Éste es un tema que se debe ver despacio y bien, y es fundamental entender el significado que tienen todo este tipo de operaciones.

A pesar de que hablamos de sumas y restas de números enteros, en realidad lo que vamos a hacer son siempre sumas de números enteros, y esos números enteros podrán ser positivos o negativos (salvo que estemos sumando el cero, que no es ni positivo ni negativo, sino neutro).

Alguien dirá que qué pasa con las restas entonces. Pues bien restar un número entero es equivalente a sumar el opuesto de dicho número entero. De esa manera las restas de números enteros se convierten en sumas, y siempre sumamos números enteros.

Dependiendo de si los números enteros que estamos sumando son ambos del mismo signo o son de distinto signo, lo haremos de una forma u otra.

Pero mejor que leer una explicación es verla y escucharla.

Por eso en el siguiente vídeo voy a explicar primero cómo sumar gráficamente números enteros, tanto en el caso de que tengan igual signo como en el caso de que sean de distinto signo. Veremos a la vez otras dos formas de hacer dichas sumas, sin necesidad de tener que representarlo. de hecho es lo que acabaremos haciendo en cuanto tengamos un poco de práctica.

Haremos bastantes ejemplos, y aprenderemos también a sumar y restar números enteros con paréntesis. Veremos cómo eliminar dichos paréntesis y así realizar las sumas de números enteros como las hemos aprendido.

Y, para terminar, resolveremos un ejercicio de sumas y restas combinadas de números enteros, en el que utilizaremos todo lo visto anteriormente, y que nos ayudará a consolidar el aprendizaje de la suma de números enteros.

Lo dicho, te dejo con el vídeo:

Leer más

Jugando con números XLI

Leer más

A %d blogueros les gusta esto: