¡Cuidado que no es lo mismo! ¿Sabes calcular bien estas potencias?

A veces aprendemos cosas de forma errónea o simplemente no tenemos claros los conceptos. Un ejemplo es el siguiente que te voy a mostrar, presta mucha atención:

Seguir leyendo…

Truco para multiplicar por números formados solo por nueves

Vamos a aprender un truco con el que podemos multiplicar de forma muy rápida números de una cifra mayores que uno por números formados solo por nueves:

Seguir leyendo…

¡Trucazo para saberse un número primo de 10 cifras!

Si te pido que me digas, sin mirar en ningún sitio, un número primo de 10 cifras, ¿te sabrías alguno?

Pues te voy a enseñar un truco para recordar un número primo de 10 cifras de una forma sencillísima:

Seguir leyendo…

Ecuaciones logarítmicas

Una ecuación logarítmica es una ecuación en la que la incógnita, la x normalmente, aparece formando parte de un logaritmo.

Un ejemplo de ecuación logarítmica sería este:

Los tipos más sencillos de ecuaciones logarítmicas son aquellas ecuaciones que solo tienen un logaritmo, y la incógnita (la x) es o bien la base del logaritmo o bien el argumento del logaritmo.

Este tipo de ecuaciones se resuelven utilizando la definición de logaritmo y resolviendo después una ecuación bastante sencilla. En el siguiente vídeo os enseño cómo resolver este tipo de ecuaciones con muchos ejemplos:

El resto de ecuaciones logarítmicas se resuelven, en su gran mayoría, utilizando las propiedades de los logaritmos para conseguir tener un único logaritmo con la misma base a cada lado de la ecuación, y así poder quedarse solo con la igualdad de los argumentos de los logaritmos. de esa manera queda una ecuación (generalmente polinómica) que se resuelve y nos da las posibles soluciones de la ecuación logarítmica.

Dichas soluciones debe comprobarse que al sustituirlas en los logaritmos no den argumentos nulos o negativos, ya que esos logaritmos no existen, y por lo tanto no serían soluciones de la ecuación logarítmica.

En los siguientes vídeos vamos a aprender a resolver este tipo de ecuaciones logarítmicas:

Seguir leyendo…

Aprendemos a calcular la raíz cúbica de 2744 en menos de un minuto

¿Sabes calcular la raíz cúbica de 2744 sin utilizar la calculadora?

Desde el canal de YouTube de Matematicascercanas vamos a aprender a hacerlo en menos de un minuto:

Seguir leyendo…

El reto de las fichas de dominó

Te propongo, desde el canal de YouTube de Matematicascercanas el siguiente reto con fichas de dominó:

¡Anímate a resolverlo y deja tu respuesta!

Por cierto, te voy a dar una pista: «Fracciones».

Seguir leyendo…

¿Qué camino es más corto, el azul o el rojo?

Te propongo, desde el canal de YouTube de Matematicascercanas el siguiente problema que es muy interesante, y además te explico la solución en menos de 1 minuto:

Seguir leyendo…

Día Mundial del Emoji ¡Te reto!

El 17 de julio se celebra el Día Mundial del Emoji.

Te propongo, desde el canal de YouTube de Matematicascercanas el siguiente reto:

¡Anímate con el reto y deja tu respuesta!

Seguir leyendo…

Ecuaciones irracionales

Una ecuación irracional es una ecuación en la que la incógnita, la x, aparece en el radicando de alguna raíz.

Un ejemplo de ecuación irracional sería el siguiente:

Para resolverlas, primero aislaremos una de las raíces que tenga en un miembro de la ecuación, y dejaremos el resto de términos en el otro miembro de la ecuación.

Después de simplificar lo que se pueda, elevaremos al cuadrado ambos miembros de la ecuación. De esa manera, después de hacer operaciones, conseguiremos que desaparezca la raíz que habíamos aislado.

En el caso de tener la ecuación más de una raíz y aún quedarnos otra raíz, volveremos a repetir el proceso, aislando esa raíz en un miembro de la ecuación, operando para simplificar en el otro miembro, y después elevando al cuadrado en ambos miembros de la ecuación.

Una vez eliminadas ya todas las raíces, obtendremos una ecuación polinómica que tendremos que resolver.

Cuando elevamos al cuadrado una ecuación no siempre se obtiene una ecuación equivalente, por lo que tenemos que comprobar que las soluciones obtenidas cumplen la ecuación inicial. Si la cumplen son soluciones de la ecuación irracional, pero si no la cumplen no lo serán.

Pero todo esto se ve y entiende mucho mejor en la práctica con ejemplos y explicándolo todo paso a paso y con detalle, así que te dejo aquí tres vídeos del canal de YouTube de Matematicascercanas con los que vas a aprender a resolver ecuaciones irracionales sin ningún problema:

Seguir leyendo…

Ecuaciones racionales

Una ecuación racional es una ecuación en la que aparecen fracciones algebraicas y, por lo tanto, la incógnita aparece en los denominadores.

Este sería un ejemplo de ecuación racional:

Para resolverlas, empezaremos por sustituir las fracciones algebraicas de la ecuación por otras fracciones equivalentes que tengan todas el mismo denominador.

Dicho denominador va a ser el mínimo común múltiplo de los denominadores. Para ello será fundamental saber factorizar los polinomios que tengamos en los denominadores.

Una vez que todas las fracciones algebraicas tengan ya el mismo denominador, eliminaremos dichos denominadores y nos quedaremos solo con los numeradores, de manera que obtendremos una ecuación polinómica que tendremos que resolver.

Por último, dado que los denominadores de las fracciones de nuestra ecuación racional no pueden ser nulos (ya sabemos que no se puede dividir entre cero), tendremos que comprobar que las soluciones que hayamos obtenido no anulen los denominadores de la ecuación inicial. Si anulan alguno de los denominadores no serán entonces solución de la ecuación racional, y si no anulan ninguno sí lo serán.

Pero todo esto se ve y entiende mucho mejor en la práctica con ejemplos y explicándolo todo paso a paso y con detalle, así que te dejo aquí tres vídeos del canal de YouTube de Matematicascercanas con los que vas a aprender a resolver ecuaciones racionales sin ningún problema:

Seguir leyendo…

Star Maths 5 – May the 4th be with you – Star Wars Day

Seguir leyendo…

Ecuación punto-pendiente de la recta

La ecuación punto-pendiente de una recta es una ecuación de la recta que se define a partir de las coordenadas de un punto cualquiera de la recta y de la pendiente m de dicha recta.

Su expresión es la siguiente:

y y1 = m (xx1)

donde:

m es la pendiente de la recta

x1 e y1 son las coordenadas de un punto de la recta

Así es que, para calcular la ecuación punto-pendiente de una recta, necesitamos conocer tanto el valor de la pendiente de la recta como las coordenadas de un punto de la misma.

En el siguiente vídeo vamos a aprender a obtener la ecuación punto-pendiente en distintas situaciones: Cuando conocemos la pendiente y un punto de la recta; a partir de dos puntos de la recta; y cuando conocemos solo la ecuación explícita de la recta. Vais a ver que es muy sencillo.

Seguir leyendo…

14 frases matemáticas para expresar tu amor en San Valentín

Se puede decir «Te quiero» de muchas maneras.

Es algo que se debería decir todos los días del año, no solo en San Valentín.

Pero aprovechando esta fecha tan señalada en el calendario, el 14 de febrero, os propongo una forma de decirlo muy particular: con matemáticas.

Os dejo 14 frases matemáticas para expresar vuestro amor, o vuestra amistad, en San Valentín y, por qué no, también el resto de días del año.

Seguir leyendo…

Repartos directamente proporcionales e inversamente proporcionales

Vamos a aprender a realizar repartos de dos formas diferentes: Repartos directamente proporcionales, y repartos inversamente proporcionales.

En un reparto directamente proporcional, se reparte una cantidad determinada (puede ser dinero o cualquier otra cosa) de forma directamente proporcional a una serie de valores dados (edades, dinero aportado…).

Así, al mayor valor le corresponde la mayor cantidad, y al menor valor le corresponde la menor cantidad.

Seguir leyendo…

Ecuaciones de grado mayor que dos

Vamos a aprender a resolver ecuaciones de grado mayor que dos.

En anteriores publicaciones aprendimos a resolver ecuaciones de primer grado, y a resolver ecuaciones de segundo grado.

Una ecuación de grado mayor que dos es una ecuación en la que el mayor exponente al que está elevada la variable es mayor que dos. Se trata, por lo tanto, de ecuaciones de tercer grado, de cuarto grado… Por ejemplo, la siguiente ecuación sería una ecuación de cuarto grado:

x4 – 3x3 – 13x2 + 15x + 6 = 0

Una cosa a tener en cuenta es que si la ecuación es de grado n va a tener como máximo soluciones reales. Así, si la ecuación es de tercer grado, como máximo podrá tener tres soluciones reales; si es de cuarto grado, tendrá como máximo cuatro soluciones reales…

Además, si tiene soluciones enteras, éstas son necesariamente divisores del término independiente de la ecuación (el término que no tiene x).

Para resolver una ecuación de grado mayor que dos, utilizamos distintas herramientas: Extraer factor común, la regla de Ruffini, el teorema del factor, resolver ecuaciones de segundo grado, las identidades notables. Es decir, las mismas herramientas que utilizábamos para factorizar un polinomio, ya que el procedimiento que vamos a seguir es similar.

En los siguientes vídeos lo vamos a ver todo con detalle y explicado paso a paso. En el primero resolveremos una ecuación de tercer grado, en el segundo una ecuación de cuarto grado, y en el tercer vídeo una ecuación de quinto grado. No obstante, el procedimiento que vamos a aprender nos va a servir para resolver cualquier tipo de ecuación de grado mayor que dos.

Seguir leyendo…

Multiplicación y división de fracciones algebraicas

Vamos a aprender a multiplicar y dividir fracciones algebraicas.

En publicaciones anteriores estuvimos viendo cómo sumar y restar fracciones algebraicas, y también cómo simplificar fracciones algebraicas.

Para multiplicar fracciones algebraicas seguimos el procedimiento que utilizábamos en la multiplicación de fracciones numéricas, es decir, multiplicamos el numerador de la primera fracción por el numerador de la segunda fracción y colocamos dicho producto en el numerador, y multiplicamos el denominador de la primera fracción por el denominador de la segunda fracción y colocamos ese producto en el denominador.

Pero lo hacemos, y esto es muy importante, de forma indicada. Es decir, no hacemos aún la multiplicación, sino que lo dejamos de forma indicada como un producto de polinomios.

¿Por qué lo hacemos así?

Muy sencillo, porque la idea es poder simplificar de la manera más sencilla posible la fracción resultante de dicho producto de fracciones algebraicas, y como vimos que para simplificar fracciones algebraicas había que factorizar tanto el numerador como el denominador, de esta forma tenemos una buena parte del trabajo de factorización ya hecho.

Solo nos quedaría intentar factorizar los polinomios que aparecen si se puede y, por último, simplificar los factores que aparezcan a la vez en el numerador y en el denominador (el procedimiento que vimos en la simplificación de fracciones algebraicas).

Y ya, como último paso, haríamos ahora sí los productos que nos hayan quedado.

Pero como todo esto se ve mucho mejor a través de ejemplos, te lo explico con detalle y paso a paso en el siguiente vídeo:

Seguir leyendo…

¡Que pongas los paréntesis!

Al margen del toque de humor, y estoy convencido de que muchos profesores de matemáticas se sentirán identificados con la imagen, cuando trabajamos con expresiones algebraicas, hacemos operaciones con polinomios, o cuando queremos plantear ecuaciones para resolver problemas, es fundamental utilizar los paréntesis cuando son necesarios.

No hacerlo nos llevará directamente a poner y hacer algo sin sentido y, si estamos en un examen de matemáticas, muy probablemente a suspenderlo.

Seguir leyendo…

Cuando las cosas no salen exactamente como pensabas…

Seguir leyendo…

2022 es un número abundante, malvado e intocable

Seguir leyendo…

2022 es un número esfénico y libre de cuadrados

Seguir leyendo…

A %d blogueros les gusta esto: