Nuevo récord de cálculo de decimales del número Pi… 62,8 billones

El pasado sábado, 14 de agosto de 2021, se batió el récord mundial de cálculo de decimales del número Pi, estableciéndolo en 62,8 billones de decimales (exactamente 62 831 853 071 750 decimales).

Después de 108 días, 9 horas, 4 minutos y 19,2 segundos, la computadora de alto rendimiento del Centro de Análisis, Visualización y Simulación de Datos (DAViS) perteneciente a la Universidad de Ciencias Aplicadas de los Grisones (FHGR) en Suiza, superó el antiguo récord mundial de 50 billones de decimales en 12,8 billones de nuevas cifras.

Lo impresionante de este nuevo récord no son solo los 12,8 billones de nuevos decimales calculados, sino que, aunque pueda parecer mucho tiempo los algo más de 3 meses y medio que se han necesitado, es casi dos veces más rápido que el récord que Google estableció en 2019, y alrededor de 3,5 veces más rápido que el último récord mundial de 2020.

Fuente de la imagen

Por cierto, los últimos 10 decimales conocidos del número Pi son:

7817924264

En la imagen anterior podéis ver los últimos 96 decimales (Last Decimal Digits: Pi).

Como anécdota, que da una idea de la magnitud de las cifras decimales calculadas, os diré que el número (escrito en base hexadecimal, que es la base con la que se va obteniendo por primera vez y que después se convierte a decimal) en un formato comprimido utiliza unos 24 TB de espacio en disco (si no estuviera comprimido ocuparía 48 TB). Para almacenarlo en base decimal se han necesitado 63 archivos comprimidos.

Leer más

Ecuaciones bicuadradas

Las ecuaciones bicuadradas son ecuaciones de cuarto grado incompletas que sólo tienen los términos de exponente par.

Es decir si, por ejemplo, la incógnita o variable es x, tienen término con x4 y con x2, pero no tienen ningún término con x3 o con x. Un ejemplo de ecuación bicuadrada sería el siguiente:

x4 – 4x2 + 3 = 0

Para resolver las ecuaciones bicuadradras utilizamos un cambio de variable, de manera que conseguimos primero transformarlas en ecuaciones de segundo grado con una nueva variable y, después de resolverlas, deshaciendo el cambio de variable que habíamos realizado, conseguimos obtener las soluciones de la ecuación bicuadrada inicial.

En el siguiente vídeo explico todo el procedimiento a seguir, paso a paso y con detalle, y realizo tres ejemplos para que se pueda entender perfectamente:

Leer más

División de polinomios

Después de haber visto la suma y resta de polinomios, el producto de un número por un polinomio, el producto de un monomio por un polinomio, y el producto de dos polinomios, vamos a aprender ahora a realizar la división o cociente de dos polinomios.

En el siguiente vídeo explico, paso a paso, todo el proceso que se debe seguir para dividir dos polinomios, y hago dos ejemplos diferentes para que quede todo muy claro:

Leer más

Teorema de la altura y Teorema del cateto

Vamos a ver dos teoremas que, como ocurría con el Teorema de Pitágoras, se pueden utilizar en triángulos rectángulos: El Teorema de la altura y el Teorema del cateto.

El Teorema de la altura relaciona la altura sobre la hipotenusa del triángulo rectángulo con las proyecciones de los catetos sobre dicha hipotenusa.

El Teorema del cateto relaciona, para cada uno de los dos catetos del triángulo rectángulo, el cateto con su proyección sobre la hipotenusa y la hipotenusa.

Pero vamos a ver todo esto explicado en el siguiente vídeo, donde resolveremos además cuatro ejemplos con diferentes datos de partida, de manera que aprenderemos a resolver cualquier ejercicio que nos puedan plantear.

Leer más

Teorema de Tales – Semejanza de triángulos

En el siguiente vídeo vamos a aprender a utilizar el Teorema de Tales.

Lo veremos en el caso de rectas cortadas por otras rectas paralelas, estableciendo proporcionalidad entre segmentos, y también cuando tengamos triángulos en posición de Tales utilizando la semejanza de triángulos.

Vamos a hacer bastantes ejemplos, recogiendo todas las situaciones que os podéis encontrar en  ejercicios, y así sabréis cómo resolverlos sin problema.

Leer más

María Gaetana Agnesi nació un 16 de mayo

Para saber más de esta gran matemática:

María Gaetana Agnesi (Milán, 1718-1799 d.C.)

Leer más

Posición relativa de dos rectas en el plano

En el plano, dos rectas pueden ser: Secantes (tienen distinta pendiente y se cortan en un punto), paralelas (tienen la misma pendiente y pasan por distintos puntos, no cortándose nunca), o coincidentes (tienen la misma pendiente y pasan por los mismos puntos).

Estudiar la posición relativa de dos rectas en el plano consiste por lo tanto en determinar, a partir de sus ecuaciones, si dos rectas son secantes, paralelas o coincidentes.

Podemos hacerlo de distintas formas. Nosotros vamos a hacerlo aquí utilizando dos procedimientos diferentes: A partir de la ecuación explícita de las rectas, y a partir de su ecuación general.

En este primer vídeo te explico cómo estudiar la posición relativa de dos rectas en el plano utilizando su ecuación explícita:

En este segundo vídeo aprenderemos a estudiar la posición relativa de dos rectas en el plano utilizando su ecuación general:

Leer más

Ecuación de una recta – Ecuación explícita

La ecuación explícita de una recta es una ecuación de la forma:

y = mx + n

Donde:

m es la pendiente de la recta

n es la ordenada en el origen

¿Cómo se obtiene la ecuación de una recta?

Dependiendo de los datos que nos den seguiremos un procedimiento u otro. En el siguiente vídeo vamos a aprender a obtener la ecuación de una recta en distintas situaciones: A partir de la representación gráfica de la recta, a partir de la pendiente de la recta y un punto de la misma, a partir de la ordenada en el origen y un punto de la recta, a partir de dos puntos de la recta (lo veremos utilizando dos métodos diferentes), y a partir de la ecuación general de la recta.

Leer más

Star Maths 4 – May the 4th be with you – Star Wars Day

Leer más

Pendiente de una recta

La pendiente de una recta mide la inclinación de la recta.

Es la tangente del ángulo que forma la recta con el eje X, es decir, con la horizontal. Dicho de una forma fácil de entender, nos indica lo que aumenta o disminuye la recta en vertical (en la ordenada o coordenada y) respecto de la variación en horizontal (en la abscisa o coordenada x).

Pero, ¿cómo podemos calcular la pendiente de una recta

En el siguiente vídeo explico con detalle qué es la pendiente de una recta, y cómo podemos calcularla en diferentes casos: A partir de la representación gráfica de la recta, a partir de dos puntos de la recta, a partir de un vector director de la recta, y a partir de la ecuación de la recta.

Leer más

A %d blogueros les gusta esto: