SOLUCIÓN del RETO 4: ¿Cuál es el valor de la caracola?

El RETO 4 que propuse era el siguiente:

Como se indicaba en la imagen, el valor de la piedra gris era la solución del RETO 1, el valor de la piedra marrón era la solución del RETO 2, y el valor de la estrella de mar era la solución del RETO 3.

El valor de cada cuadrado de la pirámide se obtenía sumando los valores de los dos cuadrados que tenía justo debajo. Siguiendo ese criterio, se trataba de completar toda la pirámide hasta obtener el valor de la caracola.

Vamos con la SOLUCIÓN.

Lo primero que vamos a hacer es sustituir las dos piedras y la estrella de mar por sus valores

obteniendo así la siguiente pirámide de partida:

Y ahora, utilizando la condición de que el valor de cada cuadrado de la pirámide se obtiene sumando los valores de los dos cuadrados que tiene justo debajo, vamos a ir completando la pirámide.

Leer másSOLUCIÓN del RETO 4: ¿Cuál es el valor de la caracola?

RETO 4: ¿Cuál es el valor de la caracola?

Como se indica en la imagen, el valor de la piedra gris es la solución del RETO 1, el valor de la piedra marrón es la solución del RETO 2, y el valor de la estrella de mar es la solución del RETO 3.

El valor de cada cuadrado de la pirámide se obtiene sumando los valores de los dos cuadrados que tiene justo debajo. Siguiendo ese criterio hay que completar toda la pirámide hasta obtener el valor de la caracola.

Leer másRETO 4: ¿Cuál es el valor de la caracola?

SOLUCIÓN del RETO 3: ¿Cuál es el valor de la estrella de mar?

El RETO 3 que propuse era el siguiente:

Como se indicaba en la imagen, el valor de la piedra gris era la solución del RETO 1, y el valor de la piedra marrón era la solución del RETO 2.

Se trataba de encontrar la lógica con la que se obtenía el valor de dentro de cada triángulo a partir de los valores de los vértices y, aplicando ese mismo razonamiento en el último triángulo, obtener el valor de la estrella de mar.

Vamos con la SOLUCIÓN.

El valor del centro de cada triángulo se obtiene restando al vértice inferior izquierdo el vértice inferior derecho, y después multiplicando el resultado obtenido por el vértice superior:

Si nos vamos al último triángulo, sustituimos cada piedra por su valor

Leer másSOLUCIÓN del RETO 3: ¿Cuál es el valor de la estrella de mar?

RETO 3: ¿Cuál es el valor de la estrella de mar?

Como se indica en la imagen, el valor de la piedra gris es la solución del RETO 1, y el valor de la piedra marrón es la solución del RETO 2.

Se trata de encontrar la lógica con la que se obtiene el valor de dentro de cada triángulo a partir de los valores de los vértices y, aplicando ese mismo razonamiento en el último triángulo, obtener el valor de la estrella de mar.

Leer másRETO 3: ¿Cuál es el valor de la estrella de mar?

SOLUCIÓN del RETO 2: ¿Cuál es el valor de una piedra marrón?

El RETO 2 que propuse era el siguiente:

En el reto se indicaba que la longitud del palo inferior era el valor de la piedra gris, solución del RETO 1.

Así que, lo primero es sustituir dicha piedra por su valor, que es 33:

Como se indica en el reto, las piedras marrones y los palos forman un triángulo rectángulo, del que conocemos la longitud de su hipotenusa, 65, y la longitud de uno de sus catetos, 33, y queremos calcular la longitud del otro cateto, que vamos a llamar x, por ejemplo.

Dado que se trata de un triángulo rectángulo, podemos utilizar el Teorema de Pitágoras para calcular la longitud del cateto que he llamado x

Leer másSOLUCIÓN del RETO 2: ¿Cuál es el valor de una piedra marrón?

A %d blogueros les gusta esto: