Happy Halloween!!!

Las aplicaciones del Algebra Lineal…

Una interesante aplicación del Álgebra Lineal… entre las muchas que tiene.

Es bueno reirse de uno mismo.

Si das pescado a un hombre hambriento…

El método hindú para multiplicar

Una de las cosas más interesantes, y yo diría que gratificantes, de las matemáticas es que existe más de una forma de llegar a un mismo destino.

En una entrada anterior del blog se mostró un método gráfico para multiplicar; en esta ocasión os presento el método hindú o de Fibonacci (Fibonacci fue el primero en introducirlo en Europa en 1202 en su Liber Abaci) para efectuar multiplicaciones.

Para utilizar el método hindú, debemos construir una tabla, que tendrá forma cuadrada o rectangular dependiendo de si la cantidad de dígitos del multiplicando y del multiplicador es igual o no.

En la siguiente imagen se muestra como se colocan los números a ser multiplicados, el multiplicador se coloca arriba (se lee de izquierda a derecha) y el multiplicando se coloca a la derecha (se lee de arriba hacia abajo).

En este caso, tenemos un número de tres dígitos (532) y otro de dos dígitos (18), por lo tanto, nuestro rectángulo es de 2×3 (dos filas por tres columnas). Luego, trazamos la diagonal a cada celda como se muestra en la imagen y listo, ya tenemos nuestra tabla.

Ahora debemos seguir los siguientes pasos:

Leer másEl método hindú para multiplicar

¿Hasta dónde llega nuestra percepción numérica?

Al hablar los chinos de las diez mil estrellas que hay en el cielo, no quiere decir que las hubieran contado todas, simplemente se trataba de una forma de expresar que era un número muy grande.

Puestos a expresar con un número que algo es muy numeroso, seguro que a muchas y muchos los parece más apropiado utilizar un millón, o un billón, o un trillón o, porque no, un cuatrillón.

Pues bien, antes de querer emplear números tan grandes, sería bueno tener en cuenta que nuestra percepción directa de un número no va más allá de las cinco unidades.

Cuando alguien extiende todos los dedos de una mano y tres de la otra, decimos con rapidez que hay un total de ocho dedos, pero eso es casi un código.

Leer más¿Hasta dónde llega nuestra percepción numérica?

A %d blogueros les gusta esto: