SOLUCIÓN del RETO 5: ¿Cuál es el valor de la concha?

El RETO 5 que propuse era el siguiente:

Como se indicaba en la imagen, el valor de la caracola era la solución del RETO 4, y se trataba de hacer todas las operaciones necesarias hasta obtener el valor de la concha.

Vamos con la SOLUCIÓN.

Lo primero que vamos a hacer es sustituir la caracola por su valor

obteniendo así la siguiente expresión de partida:

Ahora podemos seguir varios caminos hasta llega a la solución final (y eso es una de las cosas maravillosas de la matemáticas), lo que quiere decir que el que yo siga no tiene porque ser el mejor ni mucho menos. Lo que sí que voy a intentar es que haya que hacer operaciones con potencias de la misma base, que era el objetivo que me había planteado con este reto.

Leer más

SOLUCIÓN del RETO 4: ¿Cuál es el valor de la caracola?

El RETO 4 que propuse era el siguiente:

Como se indicaba en la imagen, el valor de la piedra gris era la solución del RETO 1, el valor de la piedra marrón era la solución del RETO 2, y el valor de la estrella de mar era la solución del RETO 3.

El valor de cada cuadrado de la pirámide se obtenía sumando los valores de los dos cuadrados que tenía justo debajo. Siguiendo ese criterio, se trataba de completar toda la pirámide hasta obtener el valor de la caracola.

Vamos con la SOLUCIÓN.

Lo primero que vamos a hacer es sustituir las dos piedras y la estrella de mar por sus valores

obteniendo así la siguiente pirámide de partida:

Y ahora, utilizando la condición de que el valor de cada cuadrado de la pirámide se obtiene sumando los valores de los dos cuadrados que tiene justo debajo, vamos a ir completando la pirámide.

Leer más

SOLUCIÓN del RETO 3: ¿Cuál es el valor de la estrella de mar?

El RETO 3 que propuse era el siguiente:

Como se indicaba en la imagen, el valor de la piedra gris era la solución del RETO 1, y el valor de la piedra marrón era la solución del RETO 2.

Se trataba de encontrar la lógica con la que se obtenía el valor de dentro de cada triángulo a partir de los valores de los vértices y, aplicando ese mismo razonamiento en el último triángulo, obtener el valor de la estrella de mar.

Vamos con la SOLUCIÓN.

El valor del centro de cada triángulo se obtiene restando al vértice inferior izquierdo el vértice inferior derecho, y después multiplicando el resultado obtenido por el vértice superior:

Si nos vamos al último triángulo, sustituimos cada piedra por su valor

Leer más

SOLUCIÓN del RETO 2: ¿Cuál es el valor de una piedra marrón?

El RETO 2 que propuse era el siguiente:

En el reto se indicaba que la longitud del palo inferior era el valor de la piedra gris, solución del RETO 1.

Así que, lo primero es sustituir dicha piedra por su valor, que es 33:

Como se indica en el reto, las piedras marrones y los palos forman un triángulo rectángulo, del que conocemos la longitud de su hipotenusa, 65, y la longitud de uno de sus catetos, 33, y queremos calcular la longitud del otro cateto, que vamos a llamar x, por ejemplo.

Dado que se trata de un triángulo rectángulo, podemos utilizar el Teorema de Pitágoras para calcular la longitud del cateto que he llamado x

Leer más

SOLUCIÓN del RETO 1: ¿Cuál es el valor de la última piedra?

El RETO 1 que propuse era el siguiente:

Se trata de encontrar la lógica (única) que sigue la sucesión de números de las piedras y así poder obtener el valor de la última piedra.

En una sucesión, se llama término general de la sucesión al término que ocupa un lugar cualquiera, n, de la misma, y se escribe an.

Dicho término general suele venir definido por una expresión algebraica que nos permite calcular cualquier término de la sucesión sabiendo el lugar que ocupa, n, o a partir de otro u otros términos anteriores de la sucesión (sucesiones recurrentes).

Pues bien, en este RETO 1, podemos plantear el término general de la sucesión de varias formas. Si nos vamos a las más sencillas obtendremos una misma solución que ahora veremos. Aunque si recurrimos a términos generales de mayor grado, y es algo que se puede hacer fijando el valor de la sexta piedra y buscando el polinomio interpolador de los datos que tenemos, podríamos llegar o otras soluciones diferentes. Pero no se trata aquí de hacer eso, sino de buscar soluciones obtenidas a partir de razonamientos simples.

Una primera posibilidad, probablemente la más fácil de ver, es plantearlo como una sucesión recurrente, en la que cada término de la sucesión se obtiene multiplicando el término anterior por 2 y restando después 1, y estando fijado ya el primer término, a1, con el valor de 2.

an = 2·an-1 – 1

Obteniendo como resultado para la última piedra 33.

NOTA: Es equivalente a plantear que cada término de la sucesión se obtiene sumando el término anterior el término anterior menos 1:

an = an-1 + an-1 – 1

También podemos definir el término general de la sucesión sin ser una sucesión recurrente, tan solo en función de la posición n del término, de la siguiente manera:

Leer más

A %d blogueros les gusta esto: