Mate-máticas: Pi-por-e

Leer másMate-máticas: Pi-por-e

X-Men Y-Men

Dividir entre cero…

En más de una ocasión habrás oído, o tu profesora o profesor de matemáticas te habrá dicho, que «no se puede dividir entre cero» (como desea Aladdín poder hacer en la viñeta anterior), pero también habrás escuchado que «un número dividido entre cero da infinito«.

¿Entonces?

¿En qué quedamos?

¿Se puede o no se puede?

Leer másDividir entre cero…

El triángulo equilátero también es isósceles…

El triángulo equilátero es un caso particular de triángulo isósceles. De hecho es un triángulo isósceles, triángulo con dos lados de igual longitud, con la particularidad de que el tercer lado también tiene la misma longitud.

En algunos sitios encontraréis definiciones «cerradas» que no permiten relacionar unos tipos de triángulos con otros (ni otros tipos de polígonos entre sí), y que especifican que el triángulo isósceles es aquél que tiene «solo» dos lados de igual longitud. Según dicha definición, el triángulo equilátero no podría ser también un triángulo isósceles.

Sin embargo, tienen mucho más sentido las definiciones «abiertas», que permiten relacionar unas figuras con otras, como casos particulares.

En el caso del triángulo equilátero, éste cumple todas las propiedades de un triángulo isósceles, como por ejemplo el hecho de que la recta de Euler, recta que une entre otros el ortocentro, el circuncentro y el baricentro de un triángulo, también contenga al incentro, por lo que lo lógico es considerar que también es un triángulo isósceles.

Leer másEl triángulo equilátero también es isósceles…

El cuadrado también es un rectángulo…

El cuadrado es un caso particular de rectángulo, ya que cumple con la definición de rectángulo de ser un cuadrilátero (polígono de cuatro lados) cuyos ángulos son rectos (de 90°). El hecho de que sus lados sean paralelos dos a dos (es un paralelogramo) es una consecuencia.

De hecho, el cuadrado es un rectángulo con lados contiguos congruentes.

Self-pi

«No creo que pueda encajar a todos…»

 

Viñeta de www.offthemark.com

Cuando resuelves una ecuación de segundo grado incompleta con la fórmula de la completa

Como se suele decir es… ¡Matar moscas a cañonazos!

Leer másCuando resuelves una ecuación de segundo grado incompleta con la fórmula de la completa

¡Cuidado con el ± de la solución de las ecuaciones de segundo grado!

 

¡Cuidado con olvidarse del ± de la solución de las ecuaciones de segundo grado!

Aviso para mis alumnos de 2°ESO que tienen examen de ecuaciones esta semana que viene, y para aquellos que estén o vayan a estar en esa misma situación.

Que no os pase después como en la imagen.

Como sabréis, una ecuación de segundo grado con una incógnita puede tener hasta dos soluciones o raíces (el número máximo de soluciones posibles de una ecuación nos lo da el grado de la ecuación). Si tiene infinitas soluciones entonces no se trata en realidad de una ecuación, sino de una identidad.

Tanto para las ecuaciones de segundo grado completas como para las ecuaciones de segundo grado incompletas en las que falta el término de la x, se utiliza en la solución el signo ± para obtener las dos soluciones que puede tener la ecuación.

Vamos a verlo en cada una de ellas.

Leer más¡Cuidado con el ± de la solución de las ecuaciones de segundo grado!

¿Piensas que tú tienes problemas?

¡Ha! ¿Piensas que tú tienes problemas? -le dice el libro de Matemáticas al libro de Autoayuda-.

Leer más¿Piensas que tú tienes problemas?

¿Mudanza? No, es un profesor que se lleva a casa exámenes para corregir

 

Estamos en plenos exámenes de evaluación. A unos les toca estudiar para hacerlos, y hay que reconocer que no se pasa nada bien, y a otros nos toca corregirlos, no siendo ésta precisamente la parte más apasionante de ser profesor.

Así que habrá que tomárselo con un poco de humor, que con humor se lleva todo mucho mejor.


Suscríbete al blog por correo electrónico

Suscríbete de forma totalmente gratuita al blog y sé el primero en enterarte de las novedades.

Únete a otros 4.100 suscriptores

A %d blogueros les gusta esto: