Monomios semejantes – Términos semejantes

Que dos monomios, o términos, sean semejantes quiere decir que tienen la misma parte literal.

Como vimos en la publicación de introducción a los monomios, la parte literal es la parte donde están las letras o variables con sus correspondientes exponentes.

Por ejemplo, dos monomios semejantes serían el monomio 3x y el monomio 5x, ya que en ambos la parte literal es x, es decir, tienen la misma parte literal.

Saber distinguir cuándo dos monomios o términos son semejantes y cuándo no lo son es muy importante, ya que solo se pueden sumar y restar monomios cuando son semejantes.

A veces pueden coincidir las letras pero no tener exactamente los mismos exponentes, o aparecer en un orden diferente, y puede llevarnos a confusión y no distinguir bien si los monomios o términos son semejantes o no.

En el siguiente vídeo vamos a ver bastantes ejemplos, incluyendo todo este tipo de situaciones, para que veas así todos los casos que pueden darse y aprendas a distinguir bien monomios que son semejantes de los que no lo son:

Leer más

¿Qué es un monomio? Partes y grado de un monomio

¿Qué es un monomio?

Un monomio es una expresión algebraica, formada por un solo término, en la que las únicas operaciones que aparecen entre las variables o letras son el producto y la potencia de exponente natural.

En ejemplo de monomio sería 5x2y3, ya que aparecen entre las variables o letras únicamente productos y potencias de exponente natural, y se trata además de un único término.

¿Qué partes tiene un monomio?

¿Cómo se calcula el grado de un monomio?

En el siguiente vídeo contesto a esas preguntas. Aprendemos a diferenciar expresiones algebraicas que sí son monomios de las que no lo son, vemos las partes de un monomio, cómo se calcula el grado de un monomio, y hacemos varios ejemplos, viendo algunos casos particulares, para que todo se entienda perfectamente:

Leer más

Valor numérico de una expresión algebraica

En una publicación anterior vimos como traducir expresiones del lenguaje habitual al lenguaje matemático o lenguaje algebraico, es decir, a expresiones algebraicas.

En esta ocasión vamos a aprender a calcular el valor numérico de una expresión algebraica, para determinados valores de las letras o variables de la misma.

Es algo que tenemos que saber hacer muy bien, ya que lo utilizamos en las fórmulas, para calcular el valor numérico de un polinomio, para obtener coordenadas de puntos a partir de la expresión algebraica de una función, etc.

Básicamente consiste en sustituir en la expresión algebraica cada una de sus letras o variables por los valores que nos indiquen, realizar operaciones, y obtener un valor numérico final.

En el siguiente vídeo lo explico con detalle, y hacemos bastantes ejemplos para que puedas aprender a calcular el valor numérico de una expresión algebraica (o de un polinomio) fácilmente:

Leer más

Traducir al lenguaje algebraico. Expresiones algebraicas.

Las expresiones algebraicas permiten expresar informaciones o relaciones del lenguaje cotidiano de forma matemática, en lenguaje algebraico.

Una expresión algebraica es una expresión matemática en la que pueden intervenir letras, números, y signos de operaciones.

Las letras reciben el nombre de variables o incógnitas, y se utilizan para representar números o cantidades desconocidas, o para representar números o cantidades de forma general.

Para aprender bien a traducir expresiones al lenguaje algebraico lo mejor es que te lo expliquen paso a paso, y por eso he preparado el siguiente vídeo, en el que a través de muchos ejemplos, y de diferente dificultad (de menor a mayor), aprendemos a escribir por medio de expresiones algebraicas.

Leer más

Errores clásicos en álgebra: El menos delante del paréntesis

Leer más

A %d blogueros les gusta esto: