Expresar un polinomio como el producto de una suma por una diferencia

En una publicación inicial, estuvimos viendo las identidades notables, y entre ellas el cuadrado de una suma y el cuadrado de una diferencia.

Estas dos últimas nos permitían expresar el cuadrado de una suma o el cuadrado de una diferencia de forma desarrollada como un polinomio.

Después hicimos justo lo contrario, es decir, partiendo de un polinomio, si es posible, intentábamos expresarlo como el cuadrado de una suma o como el cuadrado de una diferencia.

En esta ocasión, vamos a utilizar la otra identidad notable que vimos en su momento, la de la suma por diferencia, aplicada al revés para intentar, siempre que se pueda, expresar un polinomio como el producto de una suma por una diferencia.

Te enseño cómo hacerlo en el siguiente vídeo, y además al final del mismo te propongo varios ejercicios para hacer utilizando todo lo visto.

Leer más

Expresar un polinomio como el cuadrado de una suma o de una diferencia

En una publicación anterior, estuvimos viendo las identidades notables, y entre ellas el cuadrado de una suma y el cuadrado de una diferencia.

Estas dos últimas nos permitían expresar el cuadrado de una suma o el cuadrado de una diferencia de forma desarrollada como un polinomio.

En esta ocasión vamos a hacer justo lo contrario, es decir, partiendo de un polinomio, si es posible, vamos a intentar expresarlo como el cuadrado de una suma o como el cuadrado de una diferencia.

Te enseño cómo hacerlo en el siguiente vídeo, y además al final del mismo te propongo varios ejercicios para hacer utilizando todo lo visto.

Leer más

Factorizar polinomios

Pensemos en qué consiste descomponer un número en factores primos. Es descomponerlo en el producto de factores que son números primos.

Por ejemplo, la descomposición en factores primos de 12 sería:

12 = 22 · 3

Pues factorizar un polinomio sería algo parecido, pero con polinomios. Es decir, factorizar un polinomio es descomponerlo en el producto de dos o más polinomios del menor grado posible.

Un ejemplo sería éste:

P(x) = x4 – 3x3 – 13x2 + 15x · (x – 1) · (x + 3) · (x – 5)

Para factorizar un polinomio se pueden utilizar distintas herramientas: Extraer factor común, utilizar identidades notables, la Regla de Ruffini, resolver ecuaciones de segundo grado, y siempre podemos obtener factores a partir de las raíces del polinomio.

En el siguiente vídeo vamos a aprender a factorizar polinomios. Veremos primero en qué consiste en sí la factorización y cómo podemos obtener factores del polinomio a partir de sus raíces. Después expondremos las distintas herramientas que tenemos para realizar la factorización de un polinomio, y resolveremos tres casos diferentes, muy interesantes, que nos ayudarán a aprender perfectamente a factorizar polinomios.

Leer más

Raíces o ceros de un polinomio

Las raíces de un polinomio P(x), también conocidas como ceros del polinomio, son los valores de x que hacen que el valor numérico del polinomio sea igual a cero, es decir, las soluciones de la ecuación P(x) = 0.

Calcular las raíces de un polinomio P(x) equivale, por lo tanto, a resolver la ecuación P(x) = 0.

Así, por ejemplo, las raíces del polinomio P(x) = 2x3 + 8x2 – 2x – 8, serán las soluciones de la ecuación:

2x3 + 8x2 – 2x – 8 = 0

Por cierto, en este caso concreto, dichas raíces serían: x = 1, x = -1, x = -4.

Si se sustituye en la expresión del polinomio P(x) cada x que aparece por estos valores, es decir, se calcula el valor numérico del polinomio para x = 1, x = -1, x = -4, se obtiene como resultado cero.

En los dos siguientes vídeos vamos a ver cómo se calculan las raíces de polinomios. Al mismo tiempo estaremos aprendiendo a resolver ecuaciones de grado mayor que 2.

Veremos primero una serie de cosas importantes a tener en cuenta a la hora de intentar calcular las raíces de un polinomio, y también las distintas herramientas matemáticas con las que contamos para hacerlo: Extraer factor común, Regla de Ruffini, Teorema del resto y del factor, resolver ecuaciones de segundo grado

Leer más

División de polinomios

Después de haber visto la suma y resta de polinomios, el producto de un número por un polinomio, el producto de un monomio por un polinomio, y el producto de dos polinomios, vamos a aprender ahora a realizar la división o cociente de dos polinomios.

En el siguiente vídeo explico, paso a paso, todo el proceso que se debe seguir para dividir dos polinomios, y hago dos ejemplos diferentes para que quede todo muy claro:

Leer más

Identidades notables

Las identidades notables son unas igualdades algebraicas que nos permiten calcular de forma directa determinadas operaciones con polinomios.

Además de identidades notables, se les llama también igualdades notablesproductos notables.

Las tres identidades notables más conocidas, que son las que vamos a ver, son: el cuadrado de una suma, el cuadrado de una diferencia y la suma por diferencia:

(a + b)2 = a2 + 2ab + b2

(a – b)2 = a2 – 2ab + b2

(a + b)(a – b) = a2 – b2


En el siguiente vídeo vamos a aprender a utilizar cada una de ellas. Veremos primero de dónde salen estas igualdades, y después haremos bastantes ejercicios explicando todo paso a paso y con detalle:

Leer más

Cociente o división de un polinomio entre un monomio

Después de haber visto la suma y resta de polinomios, el producto de un número por un polinomio, el producto de un monomio por un polinomio, y el producto de dos polinomios, vamos a ver ahora el cociente o división de un polinomio entre un monomio.

Para dividir un polinomio entre un monomio, lo que hay que hacer es dividir cada término o monomio del polinomio entre el monomio.

Se trata de hacer, por lo tanto, básicamente operaciones de división de monomios.

En el siguiente vídeo explico todo el proceso de dividir un polinomio entre un monomio paso a paso, con detalle, y a través de varios ejemplos:

Leer más

Producto de dos polinomios

Después de haber visto la suma y resta de polinomios, el producto de un número por un polinomio, y el producto de un monomio por un polinomio, vamos a ver ahora una de las operaciones que más dificultades suele presentar a los alumnos: El producto o multiplicación de dos polinomios.

Para multiplicar dos polinomios, es muy importante escribir ambos entre paréntesis, y debemos multiplicar cada término o monomio del primer polinomio por cada término o monomio del segundo polinomio.

Cuanto mayor sea el número de términos que tengan los polinomios, más operaciones de multiplicación de monomios nos van a salir, por lo que más fácil será equivocarse y más cuidado deberemos tomar.

En el siguiente vídeo explico todo el proceso de multiplicar dos polinomios paso a paso, con detalle, y a través de varios ejemplos:

Leer más

Producto de un monomio por un polinomio

Después de haber visto la suma y resta de polinomios, y el producto de un número por un polinomio, continuamos con las operaciones con polinomios y vamos a aprender a multiplicar un monomio por un polinomio.

Para hacer el producto o multiplicación de un monomio por un polinomio, lo que tenemos que hacer es multiplicar dicho monomio por cada uno de los términos o monomios que forman el polinomio.

Se reduce, por tanto, a realizar un tipo de operación que ya vimos aquí en el blog: multiplicar un monomio por un monomio.

Lo explico paso a paso y con detalle en el siguiente vídeo, y hago varios ejemplos. Verás que no es complicado.

Leer más

Producto de un número por un polinomio

Después de haber visto la suma y resta de polinomios, continuamos con las operaciones con polinomios y vamos a aprender a multiplicar un número por un polinomio.

Para hacer el producto o multiplicación de un número por un polinomio, lo que tenemos que hacer es multiplicar dicho número por cada uno de los términos o monomios que forman el polinomio.

Se reduce, por tanto, a realizar un tipo de operación que ya vimos aquí en el blog: multiplicar un número por un monomio.

Para que se entienda mucho mejor todo, lo explico paso a paso y con detalle en el siguiente vídeo, y hago varios ejemplos. Verás que sencillo es.

Leer más

Suma y resta de polinomios

Para sumar o restar polinomios, lo que hacemos es sumar o restar los monomios semejantes que los forman.

Pero mejor te lo explico a través de varios ejemplos, de suma y de resta de polinomios, en el siguiente vídeo, ya que es muy importante utilizar correctamente los paréntesis en los polinomios y aplicar bien la regla de signos cuando estamos restando polinomios:

Leer más

¿Qué es un polinomio? Término y coeficiente principal, término independiente y grado

¿Qué es un polinomio?

Un polinomio es una expresión algebraica formada por la suma de varios monomios no semejantes, a los que se llama términos.

Un ejemplo de polinomio sería:

3x5 – 5x2 + 2x – 3

¿Qué partes tiene un polinomio?

¿Cómo se calcula el grado de un polinomio?

En el siguiente vídeo contesto a esas preguntas. Aprendemos a identificar el término principal en un polinomio, el coeficiente principal, el término independiente, y cómo se calcula el grado de un polinomio. Para ello hacemos varios ejemplos, viendo algunos casos particulares, para que todo se entienda perfectamente:

Leer más

Valor numérico de una expresión algebraica

En una publicación anterior vimos como traducir expresiones del lenguaje habitual al lenguaje matemático o lenguaje algebraico, es decir, a expresiones algebraicas.

En esta ocasión vamos a aprender a calcular el valor numérico de una expresión algebraica, para determinados valores de las letras o variables de la misma.

Es algo que tenemos que saber hacer muy bien, ya que lo utilizamos en las fórmulas, para calcular el valor numérico de un polinomio, para obtener coordenadas de puntos a partir de la expresión algebraica de una función, etc.

Básicamente consiste en sustituir en la expresión algebraica cada una de sus letras o variables por los valores que nos indiquen, realizar operaciones, y obtener un valor numérico final.

En el siguiente vídeo lo explico con detalle, y hacemos bastantes ejemplos para que puedas aprender a calcular el valor numérico de una expresión algebraica (o de un polinomio) fácilmente:

Leer más

Extraer factor común en un polinomio

Si todos los términos de un polinomio tienen factores comunes, se puede expresar el polinomio como el producto de un monomio (factor común) por otro polinomio que resulta de haber extraído ese factor común en cada uno de los términos del polinomio inicial.

A este procedimiento se lo conoce como extraer factor común en un polinomio.

¿Cómo se hace?

Te lo explico todo con detalle y con bastantes ejemplos resueltos en el siguiente vídeo:

Leer más

A %d blogueros les gusta esto: