Identidades notables

Las identidades notables son unas igualdades algebraicas que nos permiten calcular de forma directa determinadas operaciones con polinomios.

Además de identidades notables, se les llama también igualdades notablesproductos notables.

Las tres identidades notables más conocidas, que son las que vamos a ver, son: el cuadrado de una suma, el cuadrado de una diferencia y la suma por diferencia:

(a + b)2 = a2 + 2ab + b2

(a – b)2 = a2 – 2ab + b2

(a + b)(a – b) = a2 – b2


En el siguiente vídeo vamos a aprender a utilizar cada una de ellas. Veremos primero de dónde salen estas igualdades, y después haremos bastantes ejercicios explicando todo paso a paso y con detalle:

Leer más

El triángulo de Pascal y el binomio de Newton

En las Matemáticas hay muchas cosas y herramientas que tienen cierta magia pero, sin duda alguna, una de ellas es el conocido como triángulo de Pascal o triángulo de Tartaglia.

No se trata de una figura geométrica como tal, sino de un triángulo numérico.

Primeras quince filas del Triángulo de Pascal o Triángulo de Tartaglia

Su nombre se debe al filósofo y matemático francés Blaise Pascal, que introdujo esta notación en 1654, en su Traité du triangle arithmétique.

El otro nombre con el que se conoce también a este triángulo se debe al matemático e ingeniero italiano Niccolo Fontana, apodado Tartaglia por su condición de tartamudo.

Si bien es cierto que las aplicaciones de este famoso triángulo ya las conocían antes los matemáticos indios (siglo XI), chinos y persas.

¿Cómo se construye el Triángulo de Pascal?

Leer más

Hay una poderosa fuerza que te lleva al lado oscuro del trinomio cuadrado perfecto

Leer más

Matemáticas en una imagen… Suma por diferencia igual a diferencia de cuadrados

Leer más

Producto de binomios conjugados… eso de suma por diferencia…

¡Qué nadie se asuste con esto de los binomios conjugados, que os va a sonar y mucho!

En una entrada anterior os hablaba del cuadrado del binomio, una de esas identidades notables que aparecen inesperadamente en nuestra vida estando en clase de matemáticas:

(a + b)2 = a2 + b2 + 2ab

Y vimos su demostración gráfica…

demostración cuadrado del binomio

En esta ocasión vamos a ver otro «clásico» que acompaña en esa aparición estelar y repentina al cuadrado del binomio: el producto de binomios conjugados.

¿Binomios qué?

Espera, mejor así…

Leer más

A %d blogueros les gusta esto: