Función par y función impar. Estudiar la simetría de una función

Entre los distintos tipos de simetría que pueden presentar algunas funciones, las simetrías que tienen un mayor interés y que son de mayor utilidad a la hora de representar funciones son las de las que conocemos como funciones pares y funciones impares.

Cuando una función f  tiene una simetría axial respecto del eje de ordenadas, eje Y, decimos que es una función par, y en ella se cumple para todo su dominio que:

f(-x) = f(x)

 

Ejemplo de función par.

Sin embargo, cuando una función f  presenta una simetría central respecto del origen de coordenadas, O, decimos que es una función impar, y en ella se cumple para todo su dominio que:

f(-x) = – f(x)

 

Ejemplo de una función impar.

Si sabemos que una función es par o impar, conociendo o teniendo representada una mitad de ella (a un lado u otro del eje de ordenadas) podemos representar directamente la otra mitad.

Por esa razón es muy útil saber estudiar la simetría de una función, es decir, saber determinar de forma analítica a partir de su expresión si una función es par, impar o no presenta ninguno de estos dos tipos de simetría.

Una cosa importante a tener en cuenta es que, salvo en un caso en concreto, una función no puede ser par e impar a la vez. Es decir, si hemos obtenido que es par, no es necesario ya comprobar si es impar, ya que no puede serlo.

¿Y cuál es ese caso concreto de función que es par e impar al mismo tiempo? Vamos a deducirlo.

Si es una función par y también impar, se cumple que:

f(-x) = f(x)

y también que:

f(-x) = – f(x)

Si sustituimos ahora esta última expresión de f(-x) en la anterior, obtenemos que:

– f(x) = f(x)

y pasando todo a un miembro de la igualdad:

f(x) + f(x) =0

2• f(x) = 0

Dividiendo ahora entre 2 en ambos miembros de la igualdad, tenemos que:

f(x) = 0

Es decir, la función f(x) = 0, que coincide con el eje de abscisas o eje X, es par e impar al mismo tiempo, y es simétrica tanto respecto del eje de ordenadas como respecto del origen de coordenadas.

En el siguiente vídeo os hablo un poco más de las funciones pares e impares, y explico a través de varios ejemplos cómo podemos estudiar si una función es par, impar o ninguna de las dos.

Leer más

Tengo un lápiz y una goma mágicos de números primos

La magia plegable en papel de Peter Dahmen. Geometría que encaja a la perfección

Imagina que abres un libro y un tigre salta hacia ti, o se forma como de la nada una torre tridimensional ante tus ojos.

Los objetos tridimensionales surgen entre las dos cubiertas planas de un libro al abrirlas. Es lo que se conoce como esculturas Pop-up, y es la pasión del artista y diseñador alemán Peter Dahmen.

Seguro que alguna vez, siendo más pequeño, has tenido en tus manos un libro con imágenes que se levantaban al pasar sus páginas… aquello resultaba mágico. Peter Dahmen ha ido más allá y ha hecho de su trabajo un arte en el que la geometría encaja a la perfección.

Mientras estudiaba diseño gráfico en la universidad, recibió el encargo de crear un objeto 3D solo con papel. Pero se dio cuenta de un pequeño problema: Independientemente de lo que diseñara, no había forma segura de transportarlo a la clase en el viaje diario que realizaba en tren.

En lugar de arriesgarse a que su proyecto resultase dañado, Dahmen lo diseñó de manera que emergiera al abrir las tapas de un libro, una decisión que cambió el curso de su vida.

Disfrutó tanto con aquél desafío que se sumergió en la creación de diseños más elaborados, convirtiéndose con el tiempo en un verdadero ingeniero del papel.

Pero mejor que yo os lo cuente es que veáis en acción algunas de sus esculturas de papel y su magia plegable

Leer más

Les Luthiers, Premio Princesa de Asturias de Comunicación y Humanidades 2017, y su “Teorema de Thales”

El Premio Princesa de Asturias de Comunicación y Humanidades 2017 ha recaído este miércoles en el grupo argentino de humor y música Les Luthiers.

Caricatura de “Les Luthiers” de Santiago Castro, 2010 Argentina. (Fuente)

Les Luthiers, que se autodefinen como “humoristas que utilizan como vehículo la música, el buen gusto y la inteligencia“, iniciaron su andadura en los escenarios en 1967, por lo que llevan ya medio siglo sobre las tablas.

En sus espectáculos, donde se suceden las escenas cómicas, incorporan habitualmente instrumentos informales creados a partir de materiales de la vida cotidiana. De esta característica proviene precisamente su nombre, luthier, palabra del idioma francés que designa al fabricante, ajustador y encargado de la reparación de ciertos instrumentos musicales.

Pero…

… si esto es un blog de matemáticas…

… ¿Qué hago yo hablando aquí de ellos?

Pues, aparte de porque son una auténtica genialidad y me apetecía hacerlo, al ver la noticia de su merecidísimo Premio, me ha venido a la mente su maravillosa interpretación del “Teorema de Thales (Divertimento matemático)“, que como parece obvio tiene como fondo el conocido Teorema de Tales.

Del Teorema de Tales, para quien quiera recordarlo, hablé en su momento en la entrada:

La Pirámide de Keops

por lo que no me voy a extender aquí ahora y directamente paso a mostraros su genial interpretación.

Por Youtube se pueden encontrar distintas versiones que algunas personas han hecho con ilustraciones utilizando de fondo el audio de su actuación, pero yo he preferido poneros aquí la original grabada en 1978 en Chile, hace nada más y nada menos que 39 años (entonces no había Youtube, de hecho faltaban bastantes años para que se crease la World Wide Web (www)…).

Os dejo con ella y espero que la disfrutéis…

Leer más

El artista geómetra del fondo del mar

En 1995 apareció a casi 30 metros de profundidad en el fondo marino de las costas del sur de Japón, en las cálidas aguas de la isla de Amami Ōshima, una estructura circular de unos dos metros de diámetro.

Círculo misterioso (fuente)

Cada vez que los buceadores de la zona se sumergían encontraban estos extraños dibujos en distintas zonas del fondo marino.

Círculo misterioso en el fondo marino (fuente)

Como se desconocía su origen, los buzos locales decidieron llamarlos “círculos misteriosos”.

Y “misteriosos” continuaron siendo hasta que en 2011 se descubrió quién era el culpable de estas estructuras geométricas tan particulares…

Leer más

A %d blogueros les gusta esto: