¡Repaso exprés de ecuaciones de segundo grado incompletas!

¡Aquí tienes un repaso exprés en solo 2 minutos, de los dos tipos de ecuaciones de segundo grado incompletas!

Leer más

5 repasos rápidos de expresiones algebraicas

Las expresiones algebraicas permiten expresar informaciones o relaciones del lenguaje cotidiano de forma matemática, en lenguaje algebraico.

Para poder plantear problemas con ecuaciones es fundamental saber traducir al lenguaje algebraico.

Vamos a hacer 5 repasos muy rápidos, de menos de un minuto cada uno de expresiones algebraicas:

Leer más

Comparación de fracciones

Comparar fracciones consiste en deducir si una fracción es mayor o menor que otra (también podrían ser ni una cosa ni la otra, y ser equivalentes).

En algunas ocasiones nos pueden pedir ordenar fracciones de mayor a menor, y en otras ordenar fracciones de menor a mayor. Dependiendo de si las fracciones tienen el mismo denominador, el mismo numerador, o distinto denominador y numerador, se utilizan distintos métodos.

En el siguiente vídeo vamos a ver cada uno de estos casos y vamos a aprender a resolver ejercicios de ordenar fracciones tanto de mayor a menor como de menor a mayor:

Leer más

¡Repaso exprés de multiplicación y división de fracciones!

Vamos a hacer un repaso exprés, en menos de un minuto, de la multiplicación y división de fracciones:

Leer más

¡Esto te salvará en más de un examen!

Vamos a hacer un rapidísimo repaso, en menos de un minuto, de algunas cosas de álgebra y potencias que seguro te salvarán en más de un examen:

Leer más

Ecuaciones exponenciales

Una ecuación exponencial es una ecuación en la que la incógnita, la x normalmente, aparece en el exponente de una potencia.

Un ejemplo de ecuación exponencial sería esta:

Dependiendo del tipo de ecuación exponencial el método de resolución es diferente.

Básicamente hay tres tipos de ecuaciones exponenciales:

Leer más

¿Sabes calcular esta potencia? Aprende a hacerlo en 30 segundos

Te voy explicar como calcular la potencia de la imagen anterior, que tiene de base una fracción y exponente negativo, en 30 segundos:

Leer más

Aprende a calcular todas estas potencias en un minuto

¡Muy atento al siguiente vídeo de solo un minuto en el que vas a aprender la diferencia que hay entre todas estas potencias!

Leer más

Truco para restar sin llevadas

Vamos a aprender un truco muy sencillo para hacer esta resta sin utilizar llevadas:

Leer más

¿Cómo suena el número e?

La constante matemática e es uno de los números irracionales más importantes.​

Aparece en muchas ramas de las Matemáticas, ya que es la base de los logaritmos naturales y forma parte de muchos problemas.

Se conoce también como número de Euler o constante de Napier, y fue reconocido y utilizado por primera vez por el matemático escocés John Napier, quien introdujo el concepto de logaritmo en el cálculo matemático.

Es un número fundamental en el cálculo y en el análisis matemático.

Como número irracional que es, no se puede expresar mediante una fracción de dos números enteros. Se trata, por lo tanto, de un número con infinitas cifras decimales, pero que no es periódico.

Además, igual que π, es un número trascendente, es decir, que no puede ser raíz de ecuación algebraica alguna con coeficientes racionales.

​El valor de e en sus primeras cifras decimales es:

2,71828182845904523536028747135266249775724709…

Pero bien, el objeto de esta publicación no es tanto hablar sobre el número e sino saber cómo podría sonar.

Sí, sonar. Habéis leído bien.

Para saberlo, como ya hice en las entradas ¿Cómo suena π? , ¿Cómo suena τ? y ¿Cómo suena φ?, lo mejor es mostraros el trabajo del músico Michael Blake, que compuso una melodía con los primeros dígitos del número e y utilizando distintos instrumentos a la vez.

Os dejo que la escuchéis y me decís qué os parece.


¿Te ha gustado? No te pierdas ninguna publicación del blog, regístrate y recibirás los avisos por correo electrónico. Sabrás al instante cuándo se ha publicado algo nuevo.

Función par y función impar. Estudiar la simetría de una función

Entre los distintos tipos de simetría que pueden presentar algunas funciones, las simetrías que tienen un mayor interés y que son de mayor utilidad a la hora de representar funciones son las de las que conocemos como funciones pares y funciones impares.

Cuando una función f  tiene una simetría axial respecto del eje de ordenadas, eje Y, decimos que es una función par, y en ella se cumple para todo su dominio que:

f(-x) = f(x)

 

Ejemplo de función par.

Sin embargo, cuando una función f  presenta una simetría central respecto del origen de coordenadas, O, decimos que es una función impar, y en ella se cumple para todo su dominio que:

f(-x) = – f(x)

 

Ejemplo de una función impar.

Si sabemos que una función es par o impar, conociendo o teniendo representada una mitad de ella (a un lado u otro del eje de ordenadas) podemos representar directamente la otra mitad.

Por esa razón es muy útil saber estudiar la simetría de una función, es decir, saber determinar de forma analítica a partir de su expresión si una función es par, impar o no presenta ninguno de estos dos tipos de simetría.

Una cosa importante a tener en cuenta es que, salvo en un caso en concreto, una función no puede ser par e impar a la vez. Es decir, si hemos obtenido que es par, no es necesario ya comprobar si es impar, ya que no puede serlo.

¿Y cuál es ese caso concreto de función que es par e impar al mismo tiempo? Vamos a deducirlo.

Si es una función par y también impar, se cumple que:

f(-x) = f(x)

y también que:

f(-x) = – f(x)

Si sustituimos ahora esta última expresión de f(-x) en la anterior, obtenemos que:

– f(x) = f(x)

y pasando todo a un miembro de la igualdad:

f(x) + f(x) =0

2• f(x) = 0

Dividiendo ahora entre 2 en ambos miembros de la igualdad, tenemos que:

f(x) = 0

Es decir, la función f(x) = 0, que coincide con el eje de abscisas o eje X, es par e impar al mismo tiempo, y es simétrica tanto respecto del eje de ordenadas como respecto del origen de coordenadas.

En el siguiente vídeo os hablo un poco más de las funciones pares e impares, y explico a través de varios ejemplos cómo podemos estudiar si una función es par, impar o ninguna de las dos.

Leer más

La magia plegable en papel de Peter Dahmen. Geometría que encaja a la perfección

Imagina que abres un libro y un tigre salta hacia ti, o se forma como de la nada una torre tridimensional ante tus ojos.

Los objetos tridimensionales surgen entre las dos cubiertas planas de un libro al abrirlas. Es lo que se conoce como esculturas Pop-up, y es la pasión del artista y diseñador alemán Peter Dahmen.

Seguro que alguna vez, siendo más pequeño, has tenido en tus manos un libro con imágenes que se levantaban al pasar sus páginas… aquello resultaba mágico. Peter Dahmen ha ido más allá y ha hecho de su trabajo un arte en el que la geometría encaja a la perfección.

Mientras estudiaba diseño gráfico en la universidad, recibió el encargo de crear un objeto 3D solo con papel. Pero se dio cuenta de un pequeño problema: Independientemente de lo que diseñara, no había forma segura de transportarlo a la clase en el viaje diario que realizaba en tren.

En lugar de arriesgarse a que su proyecto resultase dañado, Dahmen lo diseñó de manera que emergiera al abrir las tapas de un libro, una decisión que cambió el curso de su vida.

Disfrutó tanto con aquél desafío que se sumergió en la creación de diseños más elaborados, convirtiéndose con el tiempo en un verdadero ingeniero del papel.

Pero mejor que yo os lo cuente es que veáis en acción algunas de sus esculturas de papel y su magia plegable

Leer más

Les Luthiers, Premio Princesa de Asturias de Comunicación y Humanidades 2017, y su «Teorema de Thales»

El Premio Princesa de Asturias de Comunicación y Humanidades 2017 ha recaído este miércoles en el grupo argentino de humor y música Les Luthiers.

Caricatura de «Les Luthiers» de Santiago Castro, 2010 Argentina. (Fuente)

Les Luthiers, que se autodefinen como «humoristas que utilizan como vehículo la música, el buen gusto y la inteligencia«, iniciaron su andadura en los escenarios en 1967, por lo que llevan ya medio siglo sobre las tablas.

En sus espectáculos, donde se suceden las escenas cómicas, incorporan habitualmente instrumentos informales creados a partir de materiales de la vida cotidiana. De esta característica proviene precisamente su nombre, luthier, palabra del idioma francés que designa al fabricante, ajustador y encargado de la reparación de ciertos instrumentos musicales.

Pero…

… si esto es un blog de matemáticas…

… ¿Qué hago yo hablando aquí de ellos?

Pues, aparte de porque son una auténtica genialidad y me apetecía hacerlo, al ver la noticia de su merecidísimo Premio, me ha venido a la mente su maravillosa interpretación del «Teorema de Thales (Divertimento matemático)«, que como parece obvio tiene como fondo el conocido Teorema de Tales.

Del Teorema de Tales, para quien quiera recordarlo, hablé en su momento en la entrada:

La Pirámide de Keops

por lo que no me voy a extender aquí ahora y directamente paso a mostraros su genial interpretación.

Por Youtube se pueden encontrar distintas versiones que algunas personas han hecho con ilustraciones utilizando de fondo el audio de su actuación, pero yo he preferido poneros aquí la original grabada en 1978 en Chile, hace nada más y nada menos que 39 años (entonces no había Youtube, de hecho faltaban bastantes años para que se crease la World Wide Web (www)…).

Os dejo con ella y espero que la disfrutéis…

Leer más

El artista geómetra del fondo del mar

En 1995 apareció a casi 30 metros de profundidad en el fondo marino de las costas del sur de Japón, en las cálidas aguas de la isla de Amami Ōshima, una estructura circular de unos dos metros de diámetro.

Círculo misterioso (fuente)

Cada vez que los buceadores de la zona se sumergían encontraban estos extraños dibujos en distintas zonas del fondo marino.

Círculo misterioso en el fondo marino (fuente)

Como se desconocía su origen, los buzos locales decidieron llamarlos «círculos misteriosos».

Y «misteriosos» continuaron siendo hasta que en 2011 se descubrió quién era el culpable de estas estructuras geométricas tan particulares…

Leer más

Algunas maneras de obtener decimales de π

El número π es seguramente el número más famoso de las matemáticas.

Como todo el mundo sabrá su valor es 3 «y algo más«.

Sobre ese «y algo más» la gran mayoría recuerda que es 3,14… (aproximación con dos decimales que habitualmente se utiliza en la escuela), o con algún decimal más 3,1415926… o, en un alarde de capacidad memorística, puede que 3,14159265358979323846264

Pared del Mathematikum de Giessen con algunos de los decimales de Pi (Imagen de Dontworry bajo Licencia CC BY-SA 4.0 via Wikimedia Commons)

Incluso se puede llegar al extremo del joven estudiante Rajveer Meena, que fue capaz de decir de memoria 70.000 decimales el 21 de marzo de 2015 en un tiempo de 9 horas y 7 minutos.

Sí, no me he equivocado… ¡70.000!… conmigo no contéis para algo así porque lo mío es razonar, no memorizar.

Pero ¿cómo podemos calcular decimales de π?

 Ya en el Papiro de Ahmes, conocido también como Papiro Rhind, escrito por el escriba Ahmes (A’h-mosè) a mediados del siglo XVI a. C. se hacía una aproximación de π considerando que un cuadrado de lado 8 equivalía en superficie a un círculo de diámetro 9.

Parte de la primera sección del Papiro de Ahmes o Papiro Rhind (Imagen de dominio público).

A lo largo de la historia se han ido utilizando nuevos métodos que han permitido obtener mejores aproximaciones de este tan popular número.

En el siguiente vídeo de Quantum Fracture se muestran, de manera bastante didáctica y amena, tres métodos que permiten ir obteniendo decimales de π, unos más eficientes que otros, pero que al menos podemos emplear para obtener los primeros decimales: El método de Arquímedes o de los polígonos regulares, el método de Montecarlo y el método empleado por Euler de las series infinitas (problema de Basilea).

Leer más

Las esculturas estroboscópicas animadas de John Edmark

John Edmark es profesor de diseño en la Universidad de Stanford.

Entre sus muchos trabajos, resultan fascinantes sus esculturas estroboscópicas impresas en 3D, que cobran vida literalmente ante nuestros ojos.

Escultura estroboscópica de John Edmark (Fuente del video: Colossal)

Estas esculturas están diseñadas para verse animadas cuando se giran bajo una luz estroboscópica.

Leer más

El Teorema de Pitágoras explicado con LEGO

Se puede explicar y demostrar el Teorema de Pitágoras de muchas maneras. Algunas de ellas las hemos visto en el blog (6 demostraciones geométricas del Teorema de Pitágoras en 1 minuto.

En esta ocasión os traigo una interesante y sencilla animación, realizada por GENIAL, en la que se utilizan piezas de LEGO para hacerlo.

PitagorasLego2

Imagen capturada de la animación.

Espero que os guste y que os sea útil…

Leer más

La fotografía arquitectónica persa de Mohammad Reza Domiri Ganji

Nasir al-Mulk mosque pnorama

Mezquita Nasir Al-Mulk en Shiraz, Irán

¿Impresionante verdad?

Se trata de la Mezquita Nasir Al-Mulk en Shiraz (Irán), conocida también como la «Mezquita Rosa«, construida durante la dinastía Qajar en 1888.

Esta fotografía panorámica es la favorita de su autor Mohammad Reza Domiri Ganji, fotógrafo iraní de 25 años y estudiante de Física, interesado en la panorámica y la fotografía arquitectónica islámica.

En ella se aprecia como los arquitectos, Muhammad Hasan-e-Memar y Muhammad Reza Kashi Paz-e-Shirazi, pensaron concienzudamente en la simetría, los azulejos, los colores, la entrada de la luz, los dibujos, las repeticiones, los arcos y las vidrieras rosadas.

Según el autor de la misma, encarna cada uno de los detalles de la arquitectura persa tradicional.

Pero veamos otras de sus espectaculares fotografías de esta admirable arquitectura, donde la geometría y la simetría están siempre presentes.

Leer más

Porcentajes ¡Todo lo que necesitas saber!

Porcentajes

Porcentajes

¿Es o no importante saber de porcentajes?

Quienes sigan el blog desde hace ya un tiempo sabrán que dimos respuesta a esta pregunta con un sencillo ejemplo en una entrada a la que llamé…

  ¿Por qué hay que saber de porcentajes?

… y la respuesta es SÍ, más que todo para que no nos engañen con facilidad.

Así es que tenemos que saber calcular porcentajes y también interpretarlos. Y eso es lo que pretende esta entrada.

Si consideras que ya dominas suficientemente el cálculo de porcentajes…

¡No te marches aún!

Esta entrada termina con una animación de 2 minutos titulada

«SI 100 PERSONAS VIVIERAN EN LA TIERRA»

que creo que te gustará bastante y es una auténtica interpretación de porcentajes.

Si 100 personas vivieran en la Tierra

Imagen capturada de la animación.

Leer más

6 demostraciones geométricas del Teorema de Pitágoras en 1 minuto

El Teorema de Pitágoras probablemente sea el teorema matemático más conocido, y seguro que un porcentaje muy alto de personas serían capaces de enunciarlo.

No obstante, recordaré lo que dice…

«En todo triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto)«.

Teorema de Pitagoras

Hay una grandísima cantidad de demostraciones de este teorema. A ello contribuyó sin duda el hecho de que en la Edad Media se exigiera una nueva demostración del mismo para alcanzar el grado de «Magíster matheseos».

Entre dichas demostraciones están las demostraciones geométricas, que suelen gustar más porque «se ven» con mayor facilidad. Y es que los desarrollos algebraicos, por lo general, atraen bastante menos.

Y ese es el objeto de esta entrada, compartir una animación realizada por Beau Janzen para el Festival do minuto de Brasil en la que se muestran seis demostraciones geométricas diferentes del Teorema de Pitágoras a modo de rompecabezas visuales… en 1 minuto.

Leer más