Les Luthiers, Premio Princesa de Asturias de Comunicación y Humanidades 2017, y su “Teorema de Thales”

El Premio Princesa de Asturias de Comunicación y Humanidades 2017 ha recaído este miércoles en el grupo argentino de humor y música Les Luthiers.

Caricatura de “Les Luthiers” de Santiago Castro, 2010 Argentina. (Fuente)

Les Luthiers, que se autodefinen como “humoristas que utilizan como vehículo la música, el buen gusto y la inteligencia“, iniciaron su andadura en los escenarios en 1967, por lo que llevan ya medio siglo sobre las tablas.

En sus espectáculos, donde se suceden las escenas cómicas, incorporan habitualmente instrumentos informales creados a partir de materiales de la vida cotidiana. De esta característica proviene precisamente su nombre, luthier, palabra del idioma francés que designa al fabricante, ajustador y encargado de la reparación de ciertos instrumentos musicales.

Pero…

… si esto es un blog de matemáticas…

… ¿Qué hago yo hablando aquí de ellos?

Pues, aparte de porque son una auténtica genialidad y me apetecía hacerlo, al ver la noticia de su merecidísimo Premio, me ha venido a la mente su maravillosa interpretación del “Teorema de Thales (Divertimento matemático)“, que como parece obvio tiene como fondo el conocido Teorema de Tales.

Del Teorema de Tales, para quien quiera recordarlo, hablé en su momento en la entrada:

La Pirámide de Keops

por lo que no me voy a extender aquí ahora y directamente paso a mostraros su genial interpretación.

Por Youtube se pueden encontrar distintas versiones que algunas personas han hecho con ilustraciones utilizando de fondo el audio de su actuación, pero yo he preferido poneros aquí la original grabada en 1978 en Chile, hace nada más y nada menos que 39 años (entonces no había Youtube, de hecho faltaban bastantes años para que se crease la World Wide Web (www)…).

Os dejo con ella y espero que la disfrutéis…

Seguir leyendo…

Advertisements

El artista geómetra del fondo del mar

En 1995 apareció a casi 30 metros de profundidad en el fondo marino de las costas del sur de Japón, en las cálidas aguas de la isla de Amami Ōshima, una estructura circular de unos dos metros de diámetro.

Círculo misterioso (fuente)

Cada vez que los buceadores de la zona se sumergían encontraban estos extraños dibujos en distintas zonas del fondo marino.

Círculo misterioso en el fondo marino (fuente)

Como se desconocía su origen, los buzos locales decidieron llamarlos “círculos misteriosos”.

Y “misteriosos” continuaron siendo hasta que en 2011 se descubrió quién era el culpable de estas estructuras geométricas tan particulares…

Seguir leyendo…

Algunas maneras de obtener decimales de π

El número π es seguramente el número más famoso de las matemáticas.

Como todo el mundo sabrá su valor es 3y algo más“.

Sobre ese “y algo más” la gran mayoría recuerda que es 3,14… (aproximación con dos decimales que habitualmente se utiliza en la escuela), o con algún decimal más 3,1415926… o, en un alarde de capacidad memorística, puede que 3,14159265358979323846264

Pared del Mathematikum de Giessen con algunos de los decimales de Pi (Imagen de Dontworry bajo Licencia CC BY-SA 4.0 via Wikimedia Commons)

Incluso se puede llegar al extremo del joven estudiante Rajveer Meena, que fue capaz de decir de memoria 70.000 decimales el 21 de marzo de 2015 en un tiempo de 9 horas y 7 minutos.

Sí, no me he equivocado… ¡70.000!… conmigo no contéis para algo así porque lo mío es razonar, no memorizar.

Pero ¿cómo podemos calcular decimales de π?

 Ya en el Papiro de Ahmes, conocido también como Papiro Rhind, escrito por el escriba Ahmes (A’h-mosè) a mediados del siglo XVI a. C. se hacía una aproximación de π considerando que un cuadrado de lado 8 equivalía en superficie a un círculo de diámetro 9.

Parte de la primera sección del Papiro de Ahmes o Papiro Rhind (Imagen de dominio público).

A lo largo de la historia se han ido utilizando nuevos métodos que han permitido obtener mejores aproximaciones de este tan popular número.

En el siguiente vídeo de Quantum Fracture se muestran, de manera bastante didáctica y amena, tres métodos que permiten ir obteniendo decimales de π, unos más eficientes que otros, pero que al menos podemos emplear para obtener los primeros decimales: El método de Arquímedes o de los polígonos regulares, el método de Montecarlo y el método empleado por Euler de las series infinitas (problema de Basilea).

Seguir leyendo…

Las esculturas estroboscópicas animadas de John Edmark

John Edmark es profesor de diseño en la Universidad de Stanford.

Entre sus muchos trabajos, resultan fascinantes sus esculturas estroboscópicas impresas en 3D, que cobran vida literalmente ante nuestros ojos.

Escultura estroboscópica de John Edmark (Fuente del video: Colossal)

Estas esculturas están diseñadas para verse animadas cuando se giran bajo una luz estroboscópica.

Seguir leyendo…

El Teorema de Pitágoras explicado con LEGO

Se puede explicar y demostrar el Teorema de Pitágoras de muchas maneras. Algunas de ellas las hemos visto en el blog (6 demostraciones geométricas del Teorema de Pitágoras en 1 minuto o Demostración ¡hidráulica! del Teorema de Pitágoras).

En esta ocasión os traigo una interesante y sencilla animación, realizada por GENIAL, en la que se utilizan piezas de LEGO para hacerlo.

PitagorasLego2

Imagen capturada de la animación.

Espero que os guste y que os sea útil…

Seguir leyendo…

La fotografía arquitectónica persa de Mohammad Reza Domiri Ganji

Nasir al-Mulk mosque pnorama

Mezquita Nasir Al-Mulk en Shiraz, Irán

¿Impresionante verdad?

Se trata de la Mezquita Nasir Al-Mulk en Shiraz (Irán), conocida también como la “Mezquita Rosa“, construida durante la dinastía Qajar en 1888.

Esta fotografía panorámica es la favorita de su autor Mohammad Reza Domiri Ganji, fotógrafo iraní de 25 años y estudiante de Física, interesado en la panorámica y la fotografía arquitectónica islámica.

En ella se aprecia como los arquitectos, Muhammad Hasan-e-Memar y Muhammad Reza Kashi Paz-e-Shirazi, pensaron concienzudamente en la simetría, los azulejos, los colores, la entrada de la luz, los dibujos, las repeticiones, los arcos y las vidrieras rosadas.

Según el autor de la misma, encarna cada uno de los detalles de la arquitectura persa tradicional.

Pero veamos otras de sus espectaculares fotografías de esta admirable arquitectura, donde la geometría y la simetría están siempre presentes.

Seguir leyendo…

Porcentajes ¡Todo lo que necesitas saber!

Porcentajes

Porcentajes

¿Es o no importante saber de porcentajes?

Quienes sigan el blog desde hace ya un tiempo sabrán que dimos respuesta a esta pregunta con un sencillo ejemplo en una entrada a la que llamé…

  ¿Por qué hay que saber de porcentajes?

… y la respuesta es SÍ, más que todo para que no nos engañen con facilidad.

Así es que tenemos que saber calcular porcentajes y también interpretarlos. Y eso es lo que pretende esta entrada.

Si consideras que ya dominas suficientemente el cálculo de porcentajes…

¡No te marches aún!

Esta entrada termina con una animación de 2 minutos titulada

“SI 100 PERSONAS VIVIERAN EN LA TIERRA”

que creo que te gustará bastante y es una auténtica interpretación de porcentajes.

Si 100 personas vivieran en la Tierra

Imagen capturada de la animación.

Seguir leyendo…

6 demostraciones geométricas del Teorema de Pitágoras en 1 minuto

El Teorema de Pitágoras probablemente sea el teorema matemático más conocido, y seguro que un porcentaje muy alto de personas serían capaces de enunciarlo.

No obstante, recordaré lo que dice…

“En todo triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).

Teorema de Pitagoras

Hay una grandísima cantidad de demostraciones de este teorema. A ello contribuyó sin duda el hecho de que en la Edad Media se exigiera una nueva demostración del mismo para alcanzar el grado de “Magíster matheseos”.

Entre dichas demostraciones están las demostraciones geométricas, que suelen gustar más porque “se ven” con mayor facilidad. Y es que los desarrollos algebraicos, por lo general, atraen bastante menos.

Y ese es el objeto de esta entrada, compartir una animación realizada por Beau Janzen para el Festival do minuto de Brasil en la que se muestran seis demostraciones geométricas diferentes del Teorema de Pitágoras a modo de rompecabezas visuales… en 1 minuto.

Seguir leyendo…

La escala del Universo… midiendo cosas

La escala del Universo... midiendo cosas

Cuando medimos cosas, somos conscientes del tamaño que tienen comparándolas con otras. El hecho de que algo lo consideremos grande o pequeño, largo o corto, mucho o poco es, en definitiva, relativo.

Carl Sagan nos contó que hay más estrellas en el universo que granos de arena en todas las playas de la Tierra. Al mismo tiempo, hay más moléculas de H2O en sólo 10 gotas de agua que estrellas.

Desde lo inimaginablemente pequeño hasta lo inimaginablemente grande, la escala del universo es increible, por eso es difícil tener un orden de magnitud correcto de las cosas.

Este video “The Scale of the Universe” (La Escala del Universo), producido por Alex Kuzoian, nos da una idea de a qué se refería Carl Sagan con sus palabras y de esto que estamos hablando.

Seguir leyendo…

El puente y los zombis … ¿puedes resolverlo?

Vas de prácticas a un laboratorio en plena montaña… y quizás eso no haya sido la mejor idea.

zombis

Tiras de una palanca marcada con el símbolo de una calavera para ver qué pasa… eso probablemente tampoco haya sido muy inteligente por tu parte… sobre todo cuando de repente aparece por la puerta que se abre un grupo de zombis que te persigue.

La única salvación es un viejo puente de cuerda. Tienes sólo 17 minutos y te acompañan otras personas que no van precisamente a tu ritmo… el puente tampoco aguanta a más de dos personas a la vez… está oscuro y solo hay una lámpara…

¿Se pueden utilizar las matemáticas para salvaros a todos antes de que lleguen los zombis?

Seguir leyendo…

¿Cómo suena el número áureo?

¿Cómo suena el número áureo?

comosuenaphi

Seguir leyendo…

Ars Qubica… el patrón geométrico de la belleza

Yo creo que en entradas como ésta sobran mis palabras, pues toda la belleza radica en la animación que os quiero mostrar.

Imagen capturada de la animación

Su autor, Cristóbal Vila, es un verdadero genio, al menos para mi y seguro que para muchas y muchos más, y sus trabajos son una auténtica maravilla.

Seguir leyendo…

Mucho más que series de Fourier… “oscillate”

Cuando uno navega por la red se encuentra muchas cosas, unas mejores y otras peores, algunas ni siquiera nos hacen detenernos y otras, sin embargo, captan nuestra atención. De esas, al final sólo nos quedamos con unas pocas que consideramos que realmente merecen la pena.

Ésta que quiero compartir con vosotras y vosotros es una de esas últimas que he mencionado.

Se trata de una animación realizada por Daniel Sierra titulada “oscillate”.

Imagen capturada de la animación “oscillate” de Daniel Sierra

Seguir leyendo…

El Último Teorema de Fermat

Andrew John Wiles es un matemático británico nacido en Cambridge, Inglaterra, el 11 de abril de 1953. Alcanzó la fama mundial en 1995 por la demostración que completó del último teorema de Fermat.

El último teorema de Fermat, conjeturado por Pierre de Fermat en 1637, pero no demostrado, establece que:

Seguir leyendo…

¿Cómo suena π?

A estas alturas, creo que π no necesita muchas presentaciones.

No obstante, para saber algunas cosas sobre tan famoso número, os recomiendo que visitéis la entrada de este blog:

Hoy es el día del número π

Pero bien, el objeto de esta entrada es mostraros un vídeo de una melodía realizada por el músico Michael Blake, utilizando los 31 primeros decimales de π.

Seguir leyendo…

¿Cómo suena τ?

Está claro que la constante π es bien conocida por todos, pero quizás no lo sea tanto τ. En matemáticas, tau (τ) es una constante propuesta por Bob Palais, Peter Harremoes, Hermann Laurent, Fred Hoyle, Michael Hartl, y otros, que pretende sustituir a la constante del círculo, π. Su principal argumento es que los círculos son definidos de forma más natural por su radio que por su diámetro.

Así, el valor de τ es τ=2π. El símbolo τ fue escogido en referencia a turn (vuelta en inglés) dado que en matemáticas τ-radianes son equivalentes a una vuelta completa.

Pues bien ¿cómo sonará τ?

comosuenatau

Seguir leyendo…

Canción de PI…

La melodía de esta canción está creada considerando el número PI, asignando a cada número una
nota en la escala A menor armónica y, a la vez, añadiendo armonías con la mano izquierda.

Una maravilla.

La teoría de colas… ¿te sientes identificada o identificado?

Todos hemos experimentado en alguna ocasión la sensación de estar perdiendo el tiempo al esperar en una cola (o fila). El fenómeno de las colas nos puede parecer algo natural, ya que esperamos en el coche al estar en un atasco, o en un semáforo mal regulado, o en un peaje; esperamos en el teléfono a que nos atienda un operador y en la cola de un supermercado para pagar; esperamos también en la cola a la entrada de un concierto o para acceder a un estadio….

colas

Generalmente como clientes no queremos esperar, y los gestores de todos esos servicios que hemos mencionado antes no quieren tampoco que esperemos, pues va en contra de su propio negocio. Pero entonces, ¿por qué hay que esperar? La respuesta es casi siempre simple, en algún momento la capacidad de servicio ha sido (o es) menor que la capacidad demandada. Esta limitación se puede eliminar invirtiendo en elementos que aumenten la capacidad. En estos casos la pregunta es: ¿Compensa invertir? La teoría de colas intenta responder a estas preguntas utilizando métodos matemáticos analíticos.

Seguir leyendo…

Matemáticas, mecánica y arte unidos en una animación

Navegar por la red a veces te da muy gratas sorpresas. Ésta que os quiero mostrar es una de ellas.

Se trata de una maravillosa animación realizada por Cristobal Vila (Eterea Estudio), donde se recrean numerosos acertijos y problemas matemáticos, referencias a obras clásicas, juegos, etc. Es espectacular la cantidad de referencias que muestra en tan poco tiempo, y con una fluidez y belleza dignas de admiración.

Os dejo que lo disfrutéis. Yo, desde luego, lo he hecho y mucho.

Demostración ¡hidráulica! del Teorema de Pitágoras

El tan conocido Teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).

Cada uno de los sumandos representa el área de un cuadrado de lados c, a y b, respectivamente. Así que, la expresión anterior se puede plantear en términos de áreas de la forma siguiente:

Seguir leyendo…

A %d blogueros les gusta esto: