Simplificar una fracción. Fracción irreducible

En una publicación anterior estuvimos viendo cómo obtener fracciones equivalentes a una fracción dada.

Vimos que se podían obtener fracciones equivalentes por amplificación, multiplicando el numerador y el denominador de la fracción por un mismo número:


Y también se podían obtener fracciones equivalentes por reducción o simplificación, dividiendo el numerador y el denominador de la fracción entre un divisor común a ambos.

Vimos también que el proceso de simplificar o reducir una fracción se termina cuando se llega a una fracción que ya no se puede simplificar más, porque el numerador y el denominador no tienen ya ningún divisor común distinto de la unidad, y a dicha fracción la llamábamos fracción irreducible.

Una forma de llegar a la fracción irreducible es ir simplificando la fracción paso a paso hasta que no se pueda simplificar ya más:

Y otra forma directa de hacerlo sería calcular primero el máximo común divisor del numerador y el denominador, y dividir directamente el numerador y el denominador entre el máximo común divisor, ya que es el mayor divisor común que tienen ambos números:

Pues bien, tenemos otra forma muy interesante de obtener la fracción irreducible de una fracción dada, y es utilizando la descomposición en factores primos del numerador y del denominador, pero sin necesidad de tener que calcular el máximo común divisor. La vemos en el siguiente vídeo:

Seguir leyendo…

Comparación de fracciones

Comparar fracciones consiste en deducir si una fracción es mayor o menor que otra (también podrían ser ni una cosa ni la otra, y ser equivalentes).

En algunas ocasiones nos pueden pedir ordenar fracciones de mayor a menor, y en otras ordenar fracciones de menor a mayor. Dependiendo de si las fracciones tienen el mismo denominador, el mismo numerador, o distinto denominador y numerador, se utilizan distintos métodos.

En el siguiente vídeo vamos a ver cada uno de estos casos y vamos a aprender a resolver ejercicios de ordenar fracciones tanto de mayor a menor como de menor a mayor:

Seguir leyendo…

¡Repaso exprés de multiplicación y división de fracciones!

Vamos a hacer un repaso exprés, en menos de un minuto, de la multiplicación y división de fracciones:

Seguir leyendo…

El reto de las fichas de dominó

Te propongo, desde el canal de YouTube de Matematicascercanas el siguiente reto con fichas de dominó:

¡Anímate a resolverlo y deja tu respuesta!

Por cierto, te voy a dar una pista: «Fracciones».

Seguir leyendo…

Fracción generatriz de un número decimal. Pasar de decimal a fracción

En algunas ocasiones tenemos que hacer operaciones en las que intervienen números decimales que no son exactos, es decir, que tienen infinitos decimales.

Si queremos evitar tener que utilizar una aproximación del número para poder realizar las operaciones con números decimales, y con ello perder exactitud en el cálculo, lo que debemos hacer es escribir dichos números en forma de fracción.

Esto es lo que se conoce como calcular la fracción generatriz de un número decimal, es decir, pasar de número decimal a fracción.

Se le llama fracción generatriz porque genera (da como resultado) dicho número decimal al dividir el numerador de la fracción entre el denominador.

Ojo, que esto, pasar de número decimal a fracción, podemos hacerlo siempre que los números decimales sean exactos, periódicos puros o periódicos mixtos (no os preocupéis porque en los vídeos que os voy a poner ahora explico perfectamente cómo es cada uno de estos números), pero no podemos hacerlo si se trata de un número irracional, que tiene infinitos decimales pero no es periódico y, por definición, no se puede expresar en forma de fracción.

Hasta aquí todo muy bien, pero necesitamos ver ejemplos y explicaciones, así que vamos a ello.

Seguir leyendo…

Potencia de una fracción de exponente negativo

¿Cómo se calcula la potencia de una fracción de exponente negativo?

Pues es más fácil de lo que pueda parecer.

Una potencia de una fracción de exponente negativo es igual a la potencia de la fracción inversa elevada al exponente positivo.

Dicho de una forma más sencilla, se le da la vuelta a la fracción (se intercambian numerador y denominador) y se pone el mismo exponente pero positivo.

Después ya solo queda hacer cálculos.

Pero así con palabras no es precisamente como mejor se entienden las cosas. Así que mejor te lo explico en el siguiente vídeo, además de ver por qué se pueden calcular así, y hacemos varios ejemplos para que te quede todo muy claro:

Seguir leyendo…

Operaciones combinadas con fracciones. Jerarquía de operaciones

Para realizar operaciones combinadas con fracciones es fundamental saberse bien la jerarquía de operaciones, es decir, el orden correcto en que deben realizarse las operaciones.

Se resuelven primero las operaciones que aparecen dentro de paréntesis y corchetes, y después el resto, siguiendo tanto dentro como fuera de los paréntesis este orden:

1. Potencias

2. Multiplicaciones y divisiones (de izquierda a derecha)

3. Sumas y restas

A continuación incluyo cuatro vídeos con cuatro ejemplos resueltos, explicados paso a paso y repasando en ellos cada una de las operaciones básicas que se realizan (sumas y restas de fracciones, multiplicaciones, divisiones y potencias):

Seguir leyendo…

Potencia de una fracción

Calcular la potencia de una fracción es muy fácil, para ello simplemente tenemos que elevar el numerador y el denominador de la fracción al exponente de dicha potencia.

Vemos por qué es así, y varios ejemplos resueltos y explicados de potencias de fracciones positivas y negativas, en el siguiente vídeo:

Seguir leyendo…

División de fracciones

Dividir dos fracciones es realmente sencillo, basta con hacer multiplicaciones «en cruz«, es decir, multiplicamos el numerador de la primera fracción por el denominador de la segunda fracción y el resultado lo colocamos en el numerador, y multiplicamos el denominador de la primera fracción por el numerador de la segunda fracción y colocamos el resultado en el denominador.

Hacemos, por lo tanto las multiplicaciones «en cruz» y, cuando empezamos multiplicando por arriba (por el numerador de la primera fracción) colocamos el resultado de la multiplicación arriba (en el numerador de la fracción resultado); Cuando empezamos multiplicando por abajo (por el denominador de la primera fracción) colocamos el resultado de la multiplicación abajo (en el denominador de la fracción resultado).

Lo vemos con varios ejemplos en el siguiente vídeo:

Seguir leyendo…

Multiplicación de fracciones

Multiplicar dos fracciones es muy sencillo, basta con hacer multiplicaciones «en línea«, es decir, multiplicamos el numerador de la primera fracción por el numerador de la segunda fracción y colocamos el resultado en el numerador, y multiplicamos el denominador de la primera fracción por el denominador de la segunda fracción y colocamos el resultado en el denominador.

Lo vemos con varios ejemplos en el siguiente vídeo:

Seguir leyendo…

Suma y resta de fracciones y números

Cuando tenemos que hacer operaciones de suma o resta entre fracciones y números, con un simple paso lo podemos convertir en una operación de suma o resta de fracciones con distinto denominador.

Para ello, lo que hacemos es sustituir el número por una fracción cuyo numerador es el propio número, y cuyo denominador es la unidad.

De esta manera lo que tenemos ya es, como comentaba, operaciones de suma y resta de fracciones con distinto denominador.

Lo explico con detalle y con un par de ejemplos en el siguiente vídeo:

Seguir leyendo…

Suma y resta de fracciones con distinto denominador

Sumar o restar fracciones con distinto denominador es muy sencillo.

Como no se pueden sumar y restar directamente al tener distinto denominador, las sustituimos por otras fracciones equivalentes en las que sí coincide el denominador.

Y, para simplificar los cálculos, utilizamos además como denominador común de dichas fracciones equivalentes el mínimo común múltiplo (m.c.m.) de los denominadores, es decir, reducimos las fracciones a mínimo común denominador.

Una vez que tenemos ya sumas y restas de fracciones con el mismo denominador, basta simplemente con dejar el mismo denominadorsumarrestar los numeradores.

Por último, si es posible, se simplifica la fracción resultante hasta obtener una fracción irreducible.

Te lo explico todo, de forma rápida y muy sencilla, en el siguiente vídeo:

Seguir leyendo…

Suma y resta de fracciones con el mismo denominador

Sumar o restar fracciones con el mismo denominador es muy sencillo.

Basta simplemente con dejar el mismo denominadorsumarrestar los numeradores.

Por ejemplo:

Te lo explico, de forma rápida y muy sencilla, en el siguiente vídeo:

Seguir leyendo…

Reducir fracciones a mínimo común denominador

Cuando tenemos fracciones con distinto denominador, y queremos compararlas u ordenarlas de menor a mayor o de mayor a menor, o bien tenemos que hacer sumas o restas con ellas, necesitamos sustituirlas por fracciones equivalentes que tengan todas el mismo denominador.

Dicho denominador puede ser cualquier múltiplo común de los denominadores pero, para simplificar cálculos, se suele utilizar siempre el mínimo común múltiplo (m.c.m.) de los denominadores.

A este procedimiento de sustituir las fracciones iniciales con distinto denominador por otras equivalentes cuyo denominador es el mínimo común múltiplo de los denominadores de las fracciones iniciales, se le conoce como reducir las fracciones a mínimo común denominador.

En el siguiente vídeo explico de forma muy sencilla cómo hacerlo:

Seguir leyendo…

Fracciones equivalentes. Simplificar o reducir una fracción

Dos fracciones son equivalentes cuando representan la misma parte de la unidad.

Se pueden obtener fracciones equivalentes utilizando dos métodos diferentes: amplificación, y reducción o simplificación.

El método de amplificación nos permite obtener todas las fracciones equivalentes a una dada que queramos, y es el que se utiliza cuando tenemos que sumar o restar fracciones con distinto denominador.

El método de simplificación o reducción es el que utilizamos para simplificar fracciones para llegar a una fracción irreducible.

Además, comprobar si dos fracciones son equivalentes es bastante sencillo.

Te explico todo esto con detalle en el siguiente vídeo:

Seguir leyendo…

Jugando con números XXXVII

Seguir leyendo…

La herencia de los tres hermanos… Una historia de fracciones

Cuenta la historia, narrada por el bagdalí compañero de viaje de Beremiz Samir, de la siguiente manera:

«Cerca de un viejo albergue de caravanas medio abandonado, vimos tres hombres que discutían acaloradamente junto a un hato de camellos.

Entre gritos e improperios, en plena discusión, braceando como posesos, se oían exclamaciones:

– ¡Qué no puede ser!

– ¡Es un robo!

– ¡Pues yo no estoy de acuerdo!

El inteligente Beremiz procuró informarse de lo que discutían.

Seguir leyendo…

Fracciones compuestas… no digas que no, porque sí sabes hacerlo

fraccionsobrefraccion00

Una fracción, por ejemplo:

fraccionsobrefraccion01

se puede entender como parte de la unidad

fraccionsobrefraccion02

… como parte de una determinada cantidad…

fraccionsobrefraccion04

 … o como cociente de dos números

fraccionsobrefraccion05

y esto es algo que se entiende sin problema.

Como también se suele aprender sin mucha dificultad como dividir dos fracciones.

Seguir leyendo…

Comparando fracciones con un cortapizzas

Supón que tenemos las dos fracciones siguientes…

Fracciones 1

Si te pregunto que cuál de ellas es mayor seguro que no tendrías problema en responderme que la de la derecha, pues teniendo las dos el mismo denominador (cinco) el numerador es mayor en la segunda (tres es mayor que dos). De cinco partes en la de la derecha estamos considerando tres, mientras que en la de la izquierda consideramos sólo dos.

Si ahora te pregunto lo mismo con estas otras dos fracciones…

fracciones 2

Me responderás rápidamente que la de la izquierda, ya que teniendo ambas fracciones el mismo numerador (tres), el denominador es menor en la de la izquierda (cuatro es menor que cinco). Es decir, en la de la izquierda son tres partes de cuatro, mientras que en la de la derecha son tres partes pero de cinco y, por tanto, menos cantidad.

Y ahora ¿cuál de estas dos fracciones es mayor?

fracciones 3

Quizás dudes un poco, porque la de la derecha tiene el numerador mayor (cinco es mayor que cuatro) pero también tiene el denominador mayor (seis es mayor que cinco) y no parece estar muy claro qué pesa más de las dos cosas para considerar si es mayor o menor que la de la izquierda.

Pero entonces, para salir de dudas, decides dibujarlo, porque dibujar las cosas suele ayudar mucho en matemáticas…

Fracciones 4

… y compruebas que el área sombreada es mayor en el dibujo de la derecha, lo que aprecias mejor aún fijándote en la parte no sombreada (como si estuvieses comparando porciones de pizza que faltan)…

Fracciones 6

(con hambre de por medio no te cabe la menor duda de que en la de la derecha queda más pizza)

… con lo que contestas acertadamente que la fracción de la derecha es mayor que la de la izquierda.

 Bien, sabías que lo de dibujarlo te podía ayudar.

Pero ahora te planteo estas otras dos fracciones…

Fracciones 5

… y te pregunto lo mismo ¿cuál es mayor?

Seguir leyendo…

Solución del acertijo «Serie de domino II»

El acertijo propuesto es el siguiente:

¿Qué ficha debería ser la última?

domino_00

Se trata de encontrar el razonamiento que se ha seguido para obtener cada una de las fichas de dominó en el orden en que aparecen y, conocido éste, poder deducir cuál es la ficha del final que está girada.

La regla lógica que se utilice tiene que ser la misma para todas las fichas (excepto la primera, que es el punto de partida y viene fijada).

¿Lo has intentado ya?

¿Qué ficha crees que es?

Si estás intentándolo o no lo has hecho aún, no sigas leyendo y piénsalo.

Si ya lo has hecho y quieres comprobar la solución… sigue leyendo.

Seguir leyendo…

A %d blogueros les gusta esto: