Multiplicación de un número por un monomio

Multiplicar un número por un monomio es muy sencillo, simplemente tenemos que multiplicar el número por el coeficiente del monomio, y escribir la misma parte literal que tenía el monomio.

Si no tienes claro claro cuál es el coeficiente de un monomio y su parte literal, puedes recordarlo aquí:

¿Qué es un monomio? Partes y grado de un monomio

Como las cosas se entienden mucho mejor cuando te las explican directamente, en el siguiente vídeo aprendemos a multiplicar un número por un monomio, y hacemos bastantes ejemplos, con números y monomios positivos y negativos, fracciones… un poco de todo lo que puede salirnos en un ejercicio para que te quede todo muy claro y estés preparado para cualquier caso que te pueda aparecer.

Leer más

Suma y resta de monomios

Para poder sumar y restar monomios, es necesario que sean monomios semejantes, es decir, que tengan la misma parte literal.

Cuando los monomios no son semejantes, la suma o resta se debe dejar indicada, es decir, sin poder dar como resultado un único monomio.

¿Cómo se suman y restan monomios semejantes?

Sumar o restar monomios semejantes es muy sencillo, ya que basta con sumar o restar los coeficientes (sumar si estamos considerando números reales con su signo, positivos o negativos) y mantener la misma parte literal.

Por ejemplo:

2x + 3x = (2+3)x = 5x

Pero muchas veces no todos los monomios son semejantes, y lo son solo algunos entre sí, otras veces pueden aparecer paréntesis agrupando varios monomios con un signo menos delante de dicho paréntesis, tener algunos monomios coeficientes que sean fracciones, o no diferenciarse bien si los monomios son semejantes o no para poder sumarlos o restarlos.

Para ayudarnos con todo esto, en el siguiente vídeo explico todo esto que he contado hasta ahora con más detalle, y hacemos bastantes ejercicios de suma y resta de monomios con casos diferentes, incluso alguno con paréntesis y fracciones, para que quede todo muy claro y estéis preparados para cualquier ejercicio que os pueda aparecer.

Leer más

Monomios semejantes – Términos semejantes

Que dos monomios, o términos, sean semejantes quiere decir que tienen la misma parte literal.

Como vimos en la publicación de introducción a los monomios, la parte literal es la parte donde están las letras o variables con sus correspondientes exponentes.

Por ejemplo, dos monomios semejantes serían el monomio 3x y el monomio 5x, ya que en ambos la parte literal es x, es decir, tienen la misma parte literal.

Saber distinguir cuándo dos monomios o términos son semejantes y cuándo no lo son es muy importante, ya que solo se pueden sumar y restar monomios cuando son semejantes.

A veces pueden coincidir las letras pero no tener exactamente los mismos exponentes, o aparecer en un orden diferente, y puede llevarnos a confusión y no distinguir bien si los monomios o términos son semejantes o no.

En el siguiente vídeo vamos a ver bastantes ejemplos, incluyendo todo este tipo de situaciones, para que veas así todos los casos que pueden darse y aprendas a distinguir bien monomios que son semejantes de los que no lo son:

Leer más

¿Qué es un monomio? Partes y grado de un monomio

¿Qué es un monomio?

Un monomio es una expresión algebraica, formada por un solo término, en la que las únicas operaciones que aparecen entre las variables o letras son el producto y la potencia de exponente natural.

En ejemplo de monomio sería 5x2y3, ya que aparecen entre las variables o letras únicamente productos y potencias de exponente natural, y se trata además de un único término.

¿Qué partes tiene un monomio?

¿Cómo se calcula el grado de un monomio?

En el siguiente vídeo contesto a esas preguntas. Aprendemos a diferenciar expresiones algebraicas que sí son monomios de las que no lo son, vemos las partes de un monomio, cómo se calcula el grado de un monomio, y hacemos varios ejemplos, viendo algunos casos particulares, para que todo se entienda perfectamente:

Leer más

Valor numérico de una expresión algebraica

En una publicación anterior vimos como traducir expresiones del lenguaje habitual al lenguaje matemático o lenguaje algebraico, es decir, a expresiones algebraicas.

En esta ocasión vamos a aprender a calcular el valor numérico de una expresión algebraica, para determinados valores de las letras o variables de la misma.

Es algo que tenemos que saber hacer muy bien, ya que lo utilizamos en las fórmulas, para calcular el valor numérico de un polinomio, para obtener coordenadas de puntos a partir de la expresión algebraica de una función, etc.

Básicamente consiste en sustituir en la expresión algebraica cada una de sus letras o variables por los valores que nos indiquen, realizar operaciones, y obtener un valor numérico final.

En el siguiente vídeo lo explico con detalle, y hacemos bastantes ejemplos para que puedas aprender a calcular el valor numérico de una expresión algebraica (o de un polinomio) fácilmente:

Leer más

A %d blogueros les gusta esto: