Simplificar fracciones algebraicas

Empecemos por ver qué es una fracción algebraica. Es una fracción en la que el numerador y el denominador son polinomios.

Por ejemplo, la siguiente fracción sería una fracción algebraica:

Simplificar una fracción algebraica es encontrar otra fracción algebraica equivalente a ella más sencilla. Que sea más sencilla quiere decir que los polinomios del numerador y del denominador tengan menor grado.

Los pasos que vamos a seguir para simplificar una fracción algebraica son muy sencillos.

Primero factorizaremos tanto el numerador como el denominador, y después simplificaremos aquellos factores que se estén en el numerador y en denominador a la vez.

Por último, si queda alguna operación de multiplicación por hacer entre factores la haremos.

En el siguiente vídeo vamos a aprender a simplificar fracciones algebraicas. Resolveremos dos ejercicios y lo haremos paso a paso explicándolo todo con detalle.

Seguir leyendo…

El pájaro enfadado y la suma al cuadrado

Nuestro pájaro está enfadado porque ve que algunos no hacen bien la identidad notable (producto notable) de la suma al cuadrado.

Para calcular bien ésta y otras identidades notables, mejor vernos bien la publicación del blog sobre las identidades notables.

Y, para evitarnos problemas en los exámenes, hagamos caso a nuestro pájaro y a Euclides, que ya lo dijo por el 300 a. C… hace ya unos añitos. Y no sólo hizo eso, sino que dio una demostración, y gráfica, como no podía ser de otra manera.

Seguir leyendo…

Factorizar polinomios

Pensemos en qué consiste descomponer un número en factores primos. Es descomponerlo en el producto de factores que son números primos.

Por ejemplo, la descomposición en factores primos de 12 sería:

12 = 22 · 3

Pues factorizar un polinomio sería algo parecido, pero con polinomios. Es decir, factorizar un polinomio es descomponerlo en el producto de dos o más polinomios del menor grado posible.

Un ejemplo sería éste:

P(x) = x4 – 3x3 – 13x2 + 15x · (x – 1) · (x + 3) · (x – 5)

Para factorizar un polinomio se pueden utilizar distintas herramientas: Extraer factor común, utilizar identidades notables, la Regla de Ruffini, resolver ecuaciones de segundo grado, y siempre podemos obtener factores a partir de las raíces del polinomio.

En el siguiente vídeo vamos a aprender a factorizar polinomios. Veremos primero en qué consiste en sí la factorización y cómo podemos obtener factores del polinomio a partir de sus raíces. Después expondremos las distintas herramientas que tenemos para realizar la factorización de un polinomio, y resolveremos tres casos diferentes, muy interesantes, que nos ayudarán a aprender perfectamente a factorizar polinomios.

Seguir leyendo…

A %d blogueros les gusta esto: