Simplificar fracciones algebraicas

Empecemos por ver qué es una fracción algebraica. Es una fracción en la que el numerador y el denominador son polinomios.

Por ejemplo, la siguiente fracción sería una fracción algebraica:

Simplificar una fracción algebraica es encontrar otra fracción algebraica equivalente a ella más sencilla. Que sea más sencilla quiere decir que los polinomios del numerador y del denominador tengan menor grado.

Los pasos que vamos a seguir para simplificar una fracción algebraica son muy sencillos.

Primero factorizaremos tanto el numerador como el denominador, y después simplificaremos aquellos factores que se estén en el numerador y en denominador a la vez.

Por último, si queda alguna operación de multiplicación por hacer entre factores la haremos.

En el siguiente vídeo vamos a aprender a simplificar fracciones algebraicas. Resolveremos dos ejercicios y lo haremos paso a paso explicándolo todo con detalle.

Leer más

Factorizar polinomios

Pensemos en qué consiste descomponer un número en factores primos. Es descomponerlo en el producto de factores que son números primos.

Por ejemplo, la descomposición en factores primos de 12 sería:

12 = 22 · 3

Pues factorizar un polinomio sería algo parecido, pero con polinomios. Es decir, factorizar un polinomio es descomponerlo en el producto de dos o más polinomios del menor grado posible.

Un ejemplo sería éste:

P(x) = x4 – 3x3 – 13x2 + 15x · (x – 1) · (x + 3) · (x – 5)

Para factorizar un polinomio se pueden utilizar distintas herramientas: Extraer factor común, utilizar identidades notables, la Regla de Ruffini, resolver ecuaciones de segundo grado, y siempre podemos obtener factores a partir de las raíces del polinomio.

En el siguiente vídeo vamos a aprender a factorizar polinomios. Veremos primero en qué consiste en sí la factorización y cómo podemos obtener factores del polinomio a partir de sus raíces. Después expondremos las distintas herramientas que tenemos para realizar la factorización de un polinomio, y resolveremos tres casos diferentes, muy interesantes, que nos ayudarán a aprender perfectamente a factorizar polinomios.

Leer más

Raíces o ceros de un polinomio

Las raíces de un polinomio P(x), también conocidas como ceros del polinomio, son los valores de x que hacen que el valor numérico del polinomio sea igual a cero, es decir, las soluciones de la ecuación P(x) = 0.

Calcular las raíces de un polinomio P(x) equivale, por lo tanto, a resolver la ecuación P(x) = 0.

Así, por ejemplo, las raíces del polinomio P(x) = 2x3 + 8x2 – 2x – 8, serán las soluciones de la ecuación:

2x3 + 8x2 – 2x – 8 = 0

Por cierto, en este caso concreto, dichas raíces serían: x = 1, x = -1, x = -4.

Si se sustituye en la expresión del polinomio P(x) cada x que aparece por estos valores, es decir, se calcula el valor numérico del polinomio para x = 1, x = -1, x = -4, se obtiene como resultado cero.

En los dos siguientes vídeos vamos a ver cómo se calculan las raíces de polinomios. Al mismo tiempo estaremos aprendiendo a resolver ecuaciones de grado mayor que 2.

Veremos primero una serie de cosas importantes a tener en cuenta a la hora de intentar calcular las raíces de un polinomio, y también las distintas herramientas matemáticas con las que contamos para hacerlo: Extraer factor común, Regla de Ruffini, Teorema del resto y del factor, resolver ecuaciones de segundo grado

Leer más

Logaritmos

Los logaritmos se utilizan, entre otras muchas cosas, para determinar la antigüedad de restos vegetales y animales cuando se utiliza el método del carbono 14.

Se utilizan también en psicología en la ley de Weber-Fechner.

Se utilizan en la escala de Richter para reflejar la energía que se desprende en un terremoto. La intensidad de un sismo se calcula en concreto utilizando logaritmos neperianos.

En Estadística se suelen aplicar en el crecimiento de la población, cuando la población crece muy rápidamente (exponencialmente).

También se utilizan en el experimento psicológico de Stenbeg.

Tienen también aplicaciones en la Música, en Topología, en Química por ejemplo para medir el pH de un producto.

En Astronomía los logaritmos son muy usuales, y se utilizan para poder medir el brillo y la magnitud de las estrellas.

En definitiva, todo lo que sean números grandes, se maneja mejor aplicando logaritmos. Pero…

¿Qué es un logaritmo?

Sea a un número positivo y distinto de 1, el logaritmo en base a de un número positivo N (argumento) es el exponente al que hay que elevar dicha base a para obtener N.

loga = ⇔  abN

Así, por ejemplo, el log2 8 es 3, ya que 2 hay que elevarlo a 3 para obtener 8.

log2 8 = 3  ⇔  23 = 8

Calcular un logaritmo puede ser relativamente sencillo, aunque hay también logaritmos que no existen en los números reales. En el siguiente vídeo vamos a aprender a calcular un logaritmo utilizando la definición de logaritmo, veremos bastantes ejemplos y, además, logaritmos especiales como el logaritmo decimal y el logaritmo neperiano. Aprenderemos y deduciremos también los casos en los que no existe logaritmo.

En el vídeo anterior hemos aprendido a calcular logaritmos a partir de la definición de logaritmo, siendo la X, lo que queremos calcular, el valor del logaritmo. Sin embargo en ocasiones se nos pide calcular la base o el argumento del logaritmo.

Para hacerlo, utilizamos también la definición de logaritmo. En el siguiente vídeo vamos a aprender a hacerlo, y con bastantes ejemplos diferentes.

Los logaritmos tienen una serie de propiedades que, lógicamente, viendo la propia definición de logaritmo, están basadas en las propiedades de las potencias.

Utilizando las propiedades de los logaritmos podemos, por ejemplo, facilitar cálculos ya que se rebaja en un escalón la dificultad de las operaciones, transformando potencias en productos, y productos y cocientes en sumas y restas, respectivamente. De ahí su utilidad.

Aplicando las propiedades de las potencias, también podemos calcular un logaritmo a partir de otros logaritmos de valor conocido.

Y podemos también transformar sumas y restas de logaritmos en un único logaritmo. Esto es precisamente lo que utilizaremos para resolver ecuaciones logarítmicas.

En el siguiente vídeo, vamos a aprender las propiedades de los logaritmos, y vamos a resolver dos tipos de ejercicios diferentes utilizando dichas propiedades.

Leer más

Racionalización de fracciones

Cuando trabajamos con fracciones, en determinadas operaciones como la suma o resta de fracciones con distinto denominador, nos interesa que los denominadores sean números naturales, ya que de lo contrario nos resulta complicado hacer cosas como reducir las fracciones a mínimo común denominador.

En ocasiones las fracciones que tenemos contienen radicales en su denominador, y necesitamos eliminarlos.

Racionalizar una fracción consiste precisamente en eso, en realizar operaciones sobre la fracción original de manera que se obtengan fracciones equivalentes en las que ya no haya radicales en el denominador.

Para racionalizar una fracción utilizaremos básicamente dos procedimientos, dependiendo de si en el denominador hay solo un radical o si se trata de una suma o una resta (binomio) con radicales.

En los dos siguientes vídeos vamos a aprender a racionalizar fracciones en cada una de esas dos situaciones. Lo veremos paso a paso, explicando primero en qué nos vamos a basar para hacerlo, y resolveremos varios ejemplos con algunas diferencias entre ellos.

Leer más

Operaciones combinadas con potencias de base una fracción

Seguimos con los ejercicios de operaciones combinadas con potencias, y en esta ocasión vamos a aprender a resolver ejercicios de operaciones combinadas en los que aparecen potencias cuya base es una fracción.

Además, aparecerán también potencias de base una fracción y con exponente negativo.

Os voy a explicar cómo se debe resolver este tipo de ejercicios y lo vamos a ver paso a paso en los dos siguientes vídeos.

Leer más

Multiplicación y división de números enteros

Después de ver la suma y resta de números enteros, continuamos con las operaciones con números enteros y vamos a aprender ahora a multiplicar y dividir números enteros.

Multiplicar y dividir números enteros es bastante sencillo. Por un lado tenemos que multiplicar o dividir, según sea la operación que estamos haciendo, los valores absolutos de los números y, para saber el signo del resultado de la operación, tenemos que utilizar la regla de los signosley de los signos.

Pero mejor que leer una explicación es verla y escucharla.

Por eso en el siguiente vídeo voy a explicar primero cómo funciona la regla de los signos, y vamos a resolver bastantes ejemplos de multiplicaciones y divisiones de números enteros, explicando todo paso a paso.

También veremos ejemplos en los que no aparezcan todos los números enteros entre paréntesis, y otros en los que no aparezca el signo de operación entre los paréntesis o entre números y paréntesis.

Por último, aprenderemos también a resolver ejercicios de multiplicaciones y divisiones combinadas de números enteros.

Te dejo con el vídeo:

Leer más

Suma y resta de números enteros

Una de las primeras y mayores dificultades que se les presenta a los alumnos es aprender a sumar y restar números enteros, ya que el salto de los números naturales a los enteros no suele ser sencillo.

Eso de que quitemos más de lo que había, o que al sumar números se obtengan resultados negativos va en contra de la idea inicial que se tiene de las sumas.

Éste es un tema que se debe ver despacio y bien, y es fundamental entender el significado que tienen todo este tipo de operaciones.

A pesar de que hablamos de sumas y restas de números enteros, en realidad lo que vamos a hacer son siempre sumas de números enteros, y esos números enteros podrán ser positivos o negativos (salvo que estemos sumando el cero, que no es ni positivo ni negativo, sino neutro).

Alguien dirá que qué pasa con las restas entonces. Pues bien restar un número entero es equivalente a sumar el opuesto de dicho número entero. De esa manera las restas de números enteros se convierten en sumas, y siempre sumamos números enteros.

Dependiendo de si los números enteros que estamos sumando son ambos del mismo signo o son de distinto signo, lo haremos de una forma u otra.

Pero mejor que leer una explicación es verla y escucharla.

Por eso en el siguiente vídeo voy a explicar primero cómo sumar gráficamente números enteros, tanto en el caso de que tengan igual signo como en el caso de que sean de distinto signo. Veremos a la vez otras dos formas de hacer dichas sumas, sin necesidad de tener que representarlo. de hecho es lo que acabaremos haciendo en cuanto tengamos un poco de práctica.

Haremos bastantes ejemplos, y aprenderemos también a sumar y restar números enteros con paréntesis. Veremos cómo eliminar dichos paréntesis y así realizar las sumas de números enteros como las hemos aprendido.

Y, para terminar, resolveremos un ejercicio de sumas y restas combinadas de números enteros, en el que utilizaremos todo lo visto anteriormente, y que nos ayudará a consolidar el aprendizaje de la suma de números enteros.

Lo dicho, te dejo con el vídeo:

Leer más

Opuesto de un número entero

El opuesto de un número entero es otro número entero con igual valor absoluto y signo contrario.

Es decir, es otro número entero que está a la misma distancia del cero pero al otro lado de la recta numérica.

El opuesto de un número entero se representa escribiendo las letras «Op» y entre paréntesis el número. Así, por ejemplo, el opuesto de -4 sería:

Op(-4)

Según la definición que hemos dado antes, el opuesto de -4 sería:

Op(-4) = +4

Pero mejor te lo voy a explicar con más detalle en el siguiente vídeo, en el que además vamos a aprender una forma muy directa y sencilla de calcular el opuesto de un número entero, y vamos a hacer varios ejemplos.

Leer más

Valor absoluto de un número entero ✔️ Operaciones con valor absoluto

El valor absoluto de un número entero representa la distancia que hay de dicho número al cero.

El valor absoluto de un número entero se representa escribiendo el número entre dos barras verticales. Así, por ejemplo, el valor absoluto de -3 sería:

|– 3|

Y, según la definición que hemos dado antes, dado que la distancia que hay de -3 a 0 es de 3 unidades, su valor sería 3.

|– 3| = 3

 

Por otra parte, puede ocurrir que tengamos operaciones en las que aparezcan valores absolutos, como por ejemplo:

|– 6 + 1| – 2

¿Cómo se resuelve este tipo de operaciones?

En el siguiente vídeo vamos a ver con más detalle el concepto de valor absoluto de un número entero, tanto su significado como cómo calcularlo de una forma sencilla y directa, y vamos a aprender a resolver operaciones con valores absolutos, para lo cuál haremos varios ejemplos diferentes explicados paso a paso.

Leer más

A %d blogueros les gusta esto: