Cuando los números racionales son superados en número por los irracionales

Traducción: «Uh-oh… ¡estamos en inferioridad numérica!»

Ya de por sí, el hecho de que unos números aparezcan diciendo que están «en inferioridad numérica» tiene su gracia, pero la viñeta encierra en sí una realidad matemática que voy a comentar a continuación.

En la época de Pitágoras, la gente se negaba a creer que los números irracionales existieran. Muchos siglos después, a finales del siglo XIX, el matemático alemán Georg Cantor descubrió que los números irracionales eran en realidad más numerosos que los racionales.

Georg Cantor (Imagen de Dominio Público)

Es decir, el infinito de los números irracionales era mayor que el de los racionales. Sin duda, en aquella época fue muy impactante la idea de que pudiera haber más de un tipo de infinito, hasta el punto de no ser aceptado por muchos matemáticos hasta bastante tiempo después.

¿No sabes qué es un número irracional?

Leer másCuando los números racionales son superados en número por los irracionales

Veo integrales…

Leer másVeo integrales…

Día Mundial del emoji Math

Fifa World Cup Russia 2018 Math – Final

Este domingo 15 de julio se juega la final de la FIFA World Cup Russia 2018 entre Francia y Croacia.

Después del problema que propuse para las semifinales, te propongo ahora este otro. Se trata de obtener el resultado de la última operación combinada que aparece.

Anímate a resolverlo y, si lo haces antes de la final, puedes decir también quién crees que ganará.

Leer másFifa World Cup Russia 2018 Math – Final

SOLUCIÓN Fifa World Cup Russia 2018 Math – Semifinals. Sistemas de ecuaciones

El problema que propuse era el siguiente:

¿Lo has intentado resolver ya?

Si no lo has hecho aún te invito a que lo hagas antes de ver la solución.

¿Lo tienes?

Pues vayamos con la RESOLUCIÓN.

Antes de empezar, decir que muchos habéis dado con la solución correcta, pero resulta que no es la única, ya que hay dos soluciones posibles, y la segunda muy pocas personas la han planteado.

En el problema os daba como datos 4 ecuaciones, 2 horizontales y 2 verticales, con las que se tenían que calcular los valores de cada bandera y así, poder realizar la operación que aparecía en diagonal para obtener la solución final.

Lo primero que vamos a hacer, ya que es mucho más sencillo para trabajar de forma algebraica, es asignar a cada bandera una letra que la represente:

De esta manera, las cuatro ecuaciones quedan así:

Leer másSOLUCIÓN Fifa World Cup Russia 2018 Math – Semifinals. Sistemas de ecuaciones

A %d blogueros les gusta esto: