2020 y las ternas pitagóricas… ¡Bastantes más!

Leer más2020 y las ternas pitagóricas… ¡Bastantes más!

Hipotenusa de un triángulo rectángulo

Leer másHipotenusa de un triángulo rectángulo

Teorema de Pitágoras

El Teorema de Pitágoras es un teorema que nos permite relacionar los tres lados de un triángulo rectángulo, por lo que es de enorme utilidad cuando conocemos dos de ellos y queremos saber el valor del tercero.

También nos sirve para comprobar, conocidos los tres lados de un triángulo, si un triángulo es rectángulo, ya que si lo es sus lados deben cumplirlo.

Como ya sabréis, un triángulo rectángulo es aquél en el que uno de sus tres ángulos mide 90 grados, es decir, es un ángulo recto. Está claro que si uno de los ángulos es recto, ninguno de los otros dos puede serlo, pues deben sumar entre los tres 180 grados.

En los triángulos rectángulos se distinguen unos lados de otros. Así, al lado mayor de los tres y opuesto al ángulo de 90 grados se le llama hipotenusa, y a los otros dos lados catetos.

Pues bien, el Teorema de Pitágoras dice que: «En todo triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos«.

Si lo expresamos de forma geométrica, el Teorema de Pitágoras quiere decir que el área de un cuadrado de lado la hipotenusa es igual a la suma de las áreas de otros dos cuadrados cuyos lados son cada uno de los catetos respectivamente.

Leer másTeorema de Pitágoras

Today 15/08/17 is a Pythagorean Theorem Day

Leer másToday 15/08/17 is a Pythagorean Theorem Day

El número áureo… y la Tierra y la Luna

De Tales a Pitágoras en la esquina de una página

detalesapitagoras

Hace un tiempo era normal marcar los puntos de lectura en un libro (por donde hemos dejado de leer para continuar en otro momento) doblando la esquina superior o inferior de la página.

esquina_doblada

Pero, alguien pensará que esto es todo un atentado a la integridad del libro…

… Y no le faltará razón, pues aunque intentemos «deshacer el mal», la marca se queda ya en la página… y desde pequeños nos han dicho siempre que los libros hay que cuidarlos (gran verdad).

Además, para esto están precisamente los marcapáginas que, si tenemos niños en las primeras etapas escolares desplegando su creatividad en forma de manualidades, no nos faltarán, a no ser que hayan desaparecido «misteriosamente» (sí, esos duendes que entran por la noche en casa cuando estamos todos dormidos y se llevan algunos de los dibujos y manualidades fruto de la incesante y prolífera creatividad de nuestros hijos… ¡Qué insensibles!).

Pero volvamos a la doblez de la esquina de la página porque, a pesar de suponer un acto un tanto irresponsable, podemos aprender matemáticas con ella.

Leer másDe Tales a Pitágoras en la esquina de una página

El Teorema de Pitágoras explicado con LEGO

Se puede explicar y demostrar el Teorema de Pitágoras de muchas maneras. Algunas de ellas las hemos visto en el blog (6 demostraciones geométricas del Teorema de Pitágoras en 1 minuto o Demostración ¡hidráulica! del Teorema de Pitágoras).

En esta ocasión os traigo una interesante y sencilla animación, realizada por GENIAL, en la que se utilizan piezas de LEGO para hacerlo.

PitagorasLego2

Imagen capturada de la animación.

Espero que os guste y que os sea útil…

Leer másEl Teorema de Pitágoras explicado con LEGO

6 demostraciones geométricas del Teorema de Pitágoras en 1 minuto

El Teorema de Pitágoras probablemente sea el teorema matemático más conocido, y seguro que un porcentaje muy alto de personas serían capaces de enunciarlo.

No obstante, recordaré lo que dice…

«En todo triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto)«.

Teorema de Pitagoras

Hay una grandísima cantidad de demostraciones de este teorema. A ello contribuyó sin duda el hecho de que en la Edad Media se exigiera una nueva demostración del mismo para alcanzar el grado de «Magíster matheseos».

Entre dichas demostraciones están las demostraciones geométricas, que suelen gustar más porque «se ven» con mayor facilidad. Y es que los desarrollos algebraicos, por lo general, atraen bastante menos.

Y ese es el objeto de esta entrada, compartir una animación realizada por Beau Janzen para el Festival do minuto de Brasil en la que se muestran seis demostraciones geométricas diferentes del Teorema de Pitágoras a modo de rompecabezas visuales… en 1 minuto.

Leer más6 demostraciones geométricas del Teorema de Pitágoras en 1 minuto

Las ternas pitagóricas y Fibonacci

¿Qué tienen en común las Ternas Pitagóricas y Fibonacci?

pitagoras-fibonacci

Leer másLas ternas pitagóricas y Fibonacci

¿Cuánto mide la cuerda?

Aún estamos con la resaca de Cheryl y su problema (bueno, en realidad el problema era para los participantes de las últimas SASMO, Singapore and Asian Schools Math Olympiads) y ya está empezando a correr por las redes otro problema, aunque este tiene bastante más tiempo que el de Cheryl.

Hace 20 años la Asociación Internacional para la Evaluación de Logros Académicos (IEA), propuso tres problemas a estudiantes de secundaria de matemáticas avanzadas de 16 países de todo el mundo. El que vamos a ver es uno de esos tres problemas. Y preguntaréis ¿por qué vamos a ver ese en concreto? Pues porque resulta que sólo supo resolverlo el 10% de los estudiantes (el 4% en Estados Unidos y el 24% en Suecia).

La asociación explicó que este problema fue el que más gente falló, y no porque sea especialmente difícil de resolver, todo lo contrario. De hecho a penas se resuelve en dos líneas y con algo muy familiar para todos (que hayan recibido una enseñanza matemática por supuesto, pero básica).

Yo no lo compararía con el problema de lógica del cumpleaños de Cheryl que, si bien es cierto que tienen en común que no hace falta saber muchas matemáticas para resolverlos, éste se basa más bien en tener lo que se suele llamar una «idea feliz».

El enunciado del problema es el siguiente:

“Una cuerda está enrollada de forma simétrica alrededor de una barra circular. La cuerda da la vuelta exactamente cuatro veces alrededor de la barra, que tiene una circunferencia de 4 centímetros y una longitud de 12 centímetros. Averigua cuánto mide la cuerda».

cuerda

Tomaos el tiempo que necesitéis para resolverlo.

¿Lo tenéis ya?

Bueno, si no es así no hay problema, vamos a ver cómo podemos resolverlo.

Si no quieres ver la SOLUCIÓN aún…. ¡no sigas bajando!

Leer más¿Cuánto mide la cuerda?

A %d blogueros les gusta esto: