Función cuadrática (parábola). Parte II: Forma desarrollada o polinómica

En una entrada anterior del blog hablé sobre la función cuadrática y, partiendo de su expresión más sencilla, y = x2, fui haciéndole transformaciones hasta llegar a la forma canónica de la función cuadrática general, de la que como conté se podía extraer directamente bastante información de su representación gráfica, es decir, de su parábola asociada:

Si quieres ver la entrada completa éste es el enlace:

Función cuadrática (parábola). Parte I: Forma canónica

Aquella entrada la terminaba diciendo que me habían faltado más cosas por contar, y entre ellas estaba relacionar todo lo que se había visto con la expresión general de la ecuación cuadrática.

Pues eso es lo que voy a hacer en esta entrada.

La expresión general o forma desarrollada o polinómica de una función cuadrática es la siguiente:

Ahora podría contaros directamente cómo se obtiene el vértice de la parábola a partir de los coeficientes de esta expresión, pero creo que no estaría aportando nada a lo que ya podéis ver en tantos sitios y prefiero que lo deduzcamos juntos.

Lo mejor es partir de la forma canónica (de la que ya sabemos bastantes cosas), desarrollarla y comparar lo que nos salga con esta expresión que acabamos de ver para sacar nuestras propias conclusiones.

Leer más

A %d blogueros les gusta esto: