Algunas maneras de obtener decimales de π

El número π es seguramente el número más famoso de las matemáticas.

Como todo el mundo sabrá su valor es 3y algo más“.

Sobre ese “y algo más” la gran mayoría recuerda que es 3,14… (aproximación con dos decimales que habitualmente se utiliza en la escuela), o con algún decimal más 3,1415926… o, en un alarde de capacidad memorística, puede que 3,14159265358979323846264

Pared del Mathematikum de Giessen con algunos de los decimales de Pi (Imagen de Dontworry bajo Licencia CC BY-SA 4.0 via Wikimedia Commons)

Incluso se puede llegar al extremo del joven estudiante Rajveer Meena, que fue capaz de decir de memoria 70.000 decimales el 21 de marzo de 2015 en un tiempo de 9 horas y 7 minutos.

Sí, no me he equivocado… ¡70.000!… conmigo no contéis para algo así porque lo mío es razonar, no memorizar.

Pero ¿cómo podemos calcular decimales de π?

 Ya en el Papiro de Ahmes, conocido también como Papiro Rhind, escrito por el escriba Ahmes (A’h-mosè) a mediados del siglo XVI a. C. se hacía una aproximación de π considerando que un cuadrado de lado 8 equivalía en superficie a un círculo de diámetro 9.

Parte de la primera sección del Papiro de Ahmes o Papiro Rhind (Imagen de dominio público).

A lo largo de la historia se han ido utilizando nuevos métodos que han permitido obtener mejores aproximaciones de este tan popular número.

En el siguiente vídeo de Quantum Fracture se muestran, de manera bastante didáctica y amena, tres métodos que permiten ir obteniendo decimales de π, unos más eficientes que otros, pero que al menos podemos emplear para obtener los primeros decimales: El método de Arquímedes o de los polígonos regulares, el método de Montecarlo y el método empleado por Euler de las series infinitas (problema de Basilea).

Seguir leyendo…

Advertisements
A %d blogueros les gusta esto: