Suma de infinitos términos de una progresión geométrica en una viñeta, gráfica y analíticamente

Nuestra amiga cobaya ha entrado en la peluquería siguiendo el reclamo del cartel pensando que le cortarían el pelo a mitad de precio. Sin embargo le han cortado la mitad del pelo, es decir 1/2.

Al comprobarlo en su reflejo en el cristal del escaparate, decide entrar otra vez, pensando que ahora le cortarán la otra mitad, pero le cortan la mitad de la mitad del pelo que le quedaba sin cortar, es decir 1/4.

Y, con esas, decide entrar de nuevo. Esta vez resignada y sabiendo ya lo que le espera, y por eso dice “Esto va a ser eterno”, porque ahora le cortarán la mitad de 1/4 de pelo, es decir 1/8, y le seguirá quedando 1/8 sin cortar, y así una y otra vez, quedándole siempre algo sin cortar.

Si lo analizamos matemáticamente, cada vez que la cobaya entra en la peluquería le cortan el pelo un término de una progresión geométrica de razón r=1/2 y primer término a1=1/2.

Pues bien, esta progresión geométrica tiene infinitos términos, y la suma de todos ellos es 1, que sería la totalidad del pelo de nuestra cobaya.

Vamos a verlo primero gráficamente:

Seguir leyendo…

Advertisements

Progresión geométrica… ¡Aquí hay mucha razón!

Esto que acabo de poner es un ejemplo de progresión geométrica.

¿No te fías de mí?

¿Que cómo sabes si es una progresión geométrica?

Quizás tendría que haber empezado explicando qué es una progresión geométrica.

No es otra cosa que una sucesión en la que cada término (excepto el primero) se obtiene multiplicando el anterior por un número o cantidad fija que llamamos razón.

Que lo de antes es una sucesión parece claro (o al menos de números), porque son números dispuestos uno a continuación de otro, pero vamos a ver si se cumple eso de que cada término se obtiene multiplicando el anterior siempre por el mismo número (la razón)…

Pues sí, cada término lo obtenemos multiplicando el que va justo antes por 2, y ocurre siempre. Luego efectivamente es una progresión geométrica y además de razón 2.

Antes de seguir contándote más cosas (esto es solo el comienzo) voy a hacer algo que nos gusta mucho en matemáticas y que es expresar todo esto “con letras”.

¡Ya estamos con las letras!

Créeme que nos va a ser útil, porque así las conclusiones que saquemos nos valdrán para cualquier caso de forma general, y no solo para uno en particular.

Seguir leyendo…

A %d blogueros les gusta esto: