Recuerdo lo que decía el problema de los cubos que propuse (bueno en realidad eran casi cuatro problemas en uno):
«En la siguiente imagen se muestra un cubo construído a partir de cubos más pequeños, todos del mismo tamaño, a los que podríamos llamar cubos unidad, cuyas caras serían caras unidad, y sus aristas, no siendo muy original… aristas unidad.
De esta manera, nuestro cubo tendría de arista cuatro (cuatro aristas unidad), y podríamos decir que es de dimensión 4 x 4 x 4.
Te voy a plantear tres cosas y tú me dices cómo piensas que sería:
Hace unos días propuse un acertijo o problema en el que se trataba de conseguir el mayor número de cuadrados con 54 cerillas (cerillos, fósforos, matches…).
Dada la dificultad que parece estar teniendo dicho problema, quizás por el número de cerillas, propongo este otro bastante más sencillo, y que quizás sirva para que, una vez visto éste, el problema de las 54 cerillas se vea ya más fácil de resolver.
Aún estamos con la resaca de Cheryl y su problema (bueno, en realidad el problema era para los participantes de las últimas SASMO, Singapore and Asian Schools Math Olympiads) y ya está empezando a correr por las redes otro problema, aunque este tiene bastante más tiempo que el de Cheryl.
Hace 20 años la Asociación Internacional para la Evaluación de Logros Académicos (IEA), propuso tres problemas a estudiantes de secundaria de matemáticas avanzadas de 16 países de todo el mundo. El que vamos a ver es uno de esos tres problemas. Y preguntaréis ¿por qué vamos a ver ese en concreto? Pues porque resulta que sólo supo resolverlo el 10% de los estudiantes (el 4% en Estados Unidos y el 24% en Suecia).
La asociación explicó que este problema fue el que más gente falló, y no porque sea especialmente difícil de resolver, todo lo contrario. De hecho a penas se resuelve en dos líneas y con algo muy familiar para todos (que hayan recibido una enseñanza matemática por supuesto, pero básica).
Yo no lo compararía con el problema de lógica del cumpleaños de Cheryl que, si bien es cierto que tienen en común que no hace falta saber muchas matemáticas para resolverlos, éste se basa más bien en tener lo que se suele llamar una «idea feliz».
El enunciado del problema es el siguiente:
“Una cuerda está enrollada de forma simétrica alrededor de una barra circular. La cuerda da la vuelta exactamente cuatro veces alrededor de la barra, que tiene una circunferencia de 4 centímetros y una longitud de 12 centímetros. Averigua cuánto mide la cuerda».
Tomaos el tiempo que necesitéis para resolverlo.
¿Lo tenéis ya?
Bueno, si no es así no hay problema, vamos a ver cómo podemos resolverlo.
Si no quieres ver la SOLUCIÓN aún…. ¡no sigas bajando!