Encuentra la lógica…

En la secuencia anterior se dan las siguientes correspondencias:

12345678 -> 4

234567 -> 2

3456 -> 2

Teniendo en cuenta lo anterior ¿cuál es la lógica de dicha correspondencia de números y el número que le corresponde a la última fila?

Advertisements

Acertijo del reloj que se retrasa

Un reloj analógico se retrasa 10 minutos cada hora.

Si el reloj está marcando la hora correcta al mediodía ¿cuántas horas habrán pasado y qué hora mostrará cuando vuelva a marcar la hora correcta por primera vez de nuevo?

ÑD FÑDYH GH FLIUDGR HV FLPFR… El código César

En el siglo I a.C., apareció un cifrado por sustitución conocido con el nombre genérico de código César.

El nombre se debe a la figura de Cayo Julio César, militar y político romano cuya dictadura puso fin a la República en Roma, que supuestamente lo utilizaba para comunicarse con sus generales.

Las y los seguidores de Astérix el galo lo conocerán por su incansable lucha intentando conquistar la pequeña aldea de irreductibles galos al noroeste de la Galia donde viven Astérix y Obelix.

¿En qué consiste el código César o cifrado César?

Seguir leyendo…

¿Es divisible entre 7?

Grafo divisibilidad 7

Que un número sea divisible entre otro quiere decir que, en un lenguaje sencillo, al dividir (división euclídea) el primero entre el segundo se obtiene de resto cero, es decir, que la división es exacta.

Si tenemos, por ejemplo, una pizza de 8 porciones y somos 3 comensales, se trata de ver si tocamos a un número entero de porciones cada persona (que 8 sea divisible entre 3) o si, por el contrario, sobra alguna o algunas de las porciones y hay que partirla o partirlas en trozos más pequeños para que todos comamos lo mismo y no quede nada (que 8 no sea divisible entre 3).

Seguir leyendo…

Ars Qubica… el patrón geométrico de la belleza

Yo creo que en entradas como ésta sobran mis palabras, pues toda la belleza radica en la animación que os quiero mostrar.

Imagen capturada de la animación

Su autor, Cristóbal Vila, es un verdadero genio, al menos para mi y seguro que para muchas y muchos más, y sus trabajos son una auténtica maravilla.

Seguir leyendo…

Where were you at x=3?

Jugando con números XI

Jugando con números 11

¿Cuántos cuadrados eres capaz de formar con 54 cerillas sin cruzarlas?

El reto consiste en lo siguiente:

“Tenemos 54 cerillas (fósforos, cerillos, mixtos, matches…).

Con esas 54 cerillas (fósforos, cerillos, mixtos, matches…) y sin cruzarlas ¿cuántos cuadrados eres capaz de formar?”

Si no lo habías visto hasta ahora o aún no te habías puesto a intentar solucionarlo, intenta resolverlo antes de seguir leyendo.

Si ya has llegado a tu solución (la que consideras mejor) puedes, si quieres, echarle un ojo a la resolución de otro problema de cerillas más sencillo que propuse en su momento: Problema de las 9 cerillas y los triángulos, y quizás te dé alguna idea nueva que no se te hubiese ocurrido.

De una manera u otra, cada persona habrá llegado a una solución, la suya.

Pues bien, vamos a intentar resolver este reto paso a paso, siguiendo más o menos el razonamiento lógico que podriamos llevar hasta llegar a la que considero que seria la mejor solución.

Repito, si no quieres ver aún la solución ¡no sigas leyendo!

¿Seguro que quieres verla?

¡No sigas si aún no lo has intentado!

Bueno, aquí va la RESOLUCIÓN…

Seguir leyendo…

Rombo… ¡No siento las piernas!

Supongo que para la mayoría la imagen/chiste anterior no necesitará explicación, pero puede haber otras personas que, simplemente por cuestión generacional, necesiten una pequeña ayuda para entenderlo.

Seguir leyendo…

Solución al reto de las 9 cerillas y los triángulos

Recuerdo lo que decía el reto o problema que proponía:

“Tenemos 9 cerillas (fósforos, cerillos, matches…).

Con esas 9 cerillas (fósforos, cerillos, matches…) ¿cuántos triángulos eres capaz de formar?”

Si es la primera vez que lo ves o aún no habías intentado solucionarlo, prueba a resolverlo antes de seguir leyendo.

Como es normal, cada persona habrá llegado a una solución, la suya, y lo más importante es haberlo intentado.

Ahora bien ¿es la mejor solución? es decir ¿se ha conseguido obtener el mayor número de triángulos posible?

Si te parece bien, vamos a intentar resolver este reto paso a paso, siguiendo más o menos el razonamiento lógico que podriamos llevar partiendo de cero y hasta llegar a la que, al menos desde mi punto de vista, es la mejor solución.

Repito, si no quieres ver aún la solución ¡no sigas leyendo!

RESOLUCIÓN

Seguir leyendo…

¿Cuántos triángulos puedes formar con 9 cerillas?

Hace unos días propuse un acertijo o problema en el que se trataba de conseguir el mayor número de cuadrados con 54 cerillas (cerillos, fósforos, matches…).

Dada la dificultad que parece estar teniendo dicho problema, quizás por el número de cerillas, propongo este otro bastante más sencillo, y que quizás sirva para que, una vez visto éste, el problema de las 54 cerillas se vea ya más fácil de resolver.

“Tenemos 9 cerillas (fósforos, cerillos, matches…).

Con esas 9 cerillas (fósforos, cerillos, matches…) ¿cuántos triángulos eres capaz de formar?”

Seguir leyendo…

Cerillas (fósforos) y cuadrados

Os propongo un sencillo problema o acertijo, de enunciado también bastante sencillo.

“Tenemos 54 cerillas (fósforos, cerillos, mixtos, matches…).

Con esas 54 cerillas (fósforos, cerillos, mixtos, matches…) y sin cruzarlas ¿cuántos cuadrados eres capaz de formar?”

Tanto las imágenes utilizadas como el problema propuesto son de autoría propia.

Mucho más que series de Fourier… “oscillate”

Cuando uno navega por la red se encuentra muchas cosas, unas mejores y otras peores, algunas ni siquiera nos hacen detenernos y otras, sin embargo, captan nuestra atención. De esas, al final sólo nos quedamos con unas pocas que consideramos que realmente merecen la pena.

Ésta que quiero compartir con vosotras y vosotros es una de esas últimas que he mencionado.

Se trata de una animación realizada por Daniel Sierra titulada “oscillate”.

Imagen capturada de la animación “oscillate” de Daniel Sierra

Seguir leyendo…

¿Sabías que…? sobre la sucesión de Fibonacci II

Seguir leyendo…

El caso de las 90 manzanas

Vivía antaño en Damasco un esforzado campesino que tenía tres hijas. Un día, hablando con el cadí, el campesino declaró que sus hijas estaban dotadas de alta inteligencia y de un raro poder imaginativo.
El cadí, envidioso y mezquino, se irritó al oír al campesino elogiar el talento de las jóvenes y declaró:

– ¡Ya es la quinta vez que oigo de tu boca elogios exagerados que exaltan la sabiduría de tus hijas! Voy a llamarlas para ver si están dotadas de tanto ingenio y perspicacia, como pregonas.

Y el cadí mandó llamar a las tres muchachas y les dijo:

– Aquí hay 90 manzanas que iréis a vender al mercado. Fátima, la mayor, llevará 50; Cunda llevará 30, y Shia, la menor, llevará las otras 10.

Seguir leyendo…

Solución de… “cortando un tronco”

Recuerdo el enunciado del problema que se planteaba:

“Tenemos varios troncos como el de la imagen que se muestra a continuación.

Se quiere aprovechar para hacer leña para una chimenea. La idea es que de cada tronco obtengamos leña que nos valga para todo el mes, utilizando así un trozo del tronco cada día. Como son bastantes los troncos que tenemos que cortar, se quiere realizar el menor número de cortes posible.

¿Cuál es el número mínimo de cortes rectos necesarios para cortar cada tronco en 30 trozos iguales y sin cambiar de posición los trozos que se van obteniendo?

Nota para los y las más puristas (hipótesis de trabajo): El tronco no se nos desmorona a medida que lo vamos cortando, es decir, se mantiene en todo momento con su forma cilíndrica original.”

Vamos a ver la SOLUCIÓN.

Seguir leyendo…

Jugando con números X

Jugando con números 10

Cortando un tronco…

Tenemos varios troncos como el de la imagen que se muestra a continuación.

Se quiere aprovechar para hacer leña para una chimenea. La idea es que de cada tronco obtengamos leña que nos valga para todo el mes, utilizando así un trozo del tronco cada día.  Como son bastantes los troncos que tenemos que cortar, se quiere realizar el menor número de cortes posible.

Seguir leyendo…

¿Cuánto mide la cuerda?

Aún estamos con la resaca de Cheryl y su problema (bueno, en realidad el problema era para los participantes de las últimas SASMO, Singapore and Asian Schools Math Olympiads) y ya está empezando a correr por las redes otro problema, aunque este tiene bastante más tiempo que el de Cheryl.

Hace 20 años la Asociación Internacional para la Evaluación de Logros Académicos (IEA), propuso tres problemas a estudiantes de secundaria de matemáticas avanzadas de 16 países de todo el mundo. El que vamos a ver es uno de esos tres problemas. Y preguntaréis ¿por qué vamos a ver ese en concreto? Pues porque resulta que sólo supo resolverlo el 10% de los estudiantes (el 4% en Estados Unidos y el 24% en Suecia).

La asociación explicó que este problema fue el que más gente falló, y no porque sea especialmente difícil de resolver, todo lo contrario. De hecho a penas se resuelve en dos líneas y con algo muy familiar para todas y todos (que hayan recibido una enseñanza matemática por supuesto, pero básica).

Yo no lo compararía con el problema de lógica del cumpleaños de Cheryl que, si bien es cierto que tienen en común que no hace falta saber muchas matemáticas para resolverlos, éste se basa más bien en tener lo que se suele llamar una “idea feliz”.

El enunciado del problema es el siguiente:

“Una cuerda está enrollada de forma simétrica alrededor de una barra circular. La cuerda da la vuelta exactamente cuatro veces alrededor de la barra, que tiene una circunferencia de 4 centímetros y una longitud de 12 centímetros. Averigua cuánto mide la cuerda”.

cuerda

Tomaros el tiempo que necesitéis para resolverlo.

¿Lo tenéis ya?

Bueno, si no es así no hay problema, vamos a ver como podemos resolverlo.

Si no quieres ver la SOLUCIÓN aún…. ¡no sigas bajando!

Seguir leyendo…

¿Sabías que…? sobre la sucesión de Fibonacci

Seguir leyendo…

A %d blogueros les gusta esto: