Hipotenusa de un triángulo rectángulo

Seguir leyendo…

Advertisements

Laura y Juan… y el problema del televisor

Laura, Juan y el televisor

Laura y Juan son una pareja que vive en un piso ni pequeño ni grande, digamos que normal.

Cuando están en casa, pasan bastante tiempo en el salón, que ni es muy grande ni tampoco demasiado pequeño, digamos que es… normal. Como… normal es también el mueble de su salón, con unas estanterías donde tienen libros, un par de fotos enmarcadas, alguna que otra figurita de recuerdo que les han ido regalando sus amigos, y un espacio reservado en el mueble para el televisor.

Y aquí es a donde quería llegar. En casa de Laura y Juan, todo parece… normal, bueno, digamos que común, porque lo de ser normal es algo muy relativo. Así es que, en casa de Laura y Juan (incluidos ellos) todo parece bastante común, salvo… su televisor. O eso es lo que piensan ellos.

Seguir leyendo…

Hipopotenusa

Cuando se trabaja con triángulos rectángulos, como por ejemplo al estudiar el Teorema de Pitágoras, en ocasiones (más de las que desearían muchos docentes) los alumnos tienen problemas para identificar la hipotenusa (en inglés hypotenuse)..

De hecho, a pesar de lo que muchos piensan (y no por culpa de ellos) la hipotenusa no tiene por qué ser la «x» (es decir, la incógnita), pues depende de cada caso, y esa «x» podría ser cualquiera de los catetos del triángulo rectángulo (los otros dos lados). Entonces se recurre a definir la hipotenusa como «el lado de mayor longitud de un triángulo rectángulo» o «el lado opuesto al ángulo recto»… con mayor o menor éxito.

Seguro además que muchas y muchos docentes tienen sus propios «trucos» para ayudar a recordar correctamente a sus alumnos cuál de los tres lados del triángulo rectángulo es la hipotenusa. Y esa precisamente es la razón de esta entrada, mostraros la que me ha parecido una forma bastante curiosa y divertida de intentar conseguir esto: la hipopotenusa (en inglés ahora sería hippopotenuse).

No se si conseguiremos nuestro objetivo pero, cuando menos, nos garantizamos unas risas en la clase, que también vienen bien.

Demostración ¡hidráulica! del Teorema de Pitágoras

El tan conocido Teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).

Cada uno de los sumandos representa el área de un cuadrado de lados c, a y b, respectivamente. Así que, la expresión anterior se puede plantear en términos de áreas de la forma siguiente:

Seguir leyendo…

El Árbol de Pitágoras

El tan conocido y mencionado en la escuela teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).

Una forma tradicional de representar dicho teorema es la de la siguiente figura:

Teorema_de_Pitagoras

Podemos plantearlo como que tenemos un cuadrado, y sobre uno de sus lados construimos un triángulo rectángulo, de manera que sobre cada uno de los dos catetos de ese triángulo construimos sendos cuadrados de lado dichos catetos respectivamente.

Ahora, con los dos cuadrados construidos posteriormente podemos repetir el mismo procedimiento. Si, por ejemplo, lo repetimos dos veces más, tendríamos algo así:

arbol_3pasos

Este procedimiento podemos repetirlo tantas veces como queramos obteniendo… un fractal, conocido como Árbol de Pitágoras. Fue construido por primera vez por el profesor de matemáticas Albert E. Bosman (1891-1961), en Holanda en 1942.

Seguir leyendo…

A %d blogueros les gusta esto: