Solución de «Multiplicando los números de dos cifras… ceros»

El problema propuesto es el siguiente:


Veamos la SOLUCIÓN…

solucionceros

Leer másSolución de «Multiplicando los números de dos cifras… ceros»

«Truco» para las razones trigonométricas de ángulos notables

En nuestra aventura de conocimiento que es la escuela, en esa travesía que hacemos por la senda de las matemáticas, que en ocasiones parece más un laberinto que un camino, llega un momento en que viajamos por el… mundo de la geometría.

Primero aparecen las figuras geométricas y aprendemos a distinguir entre triángulos, cuadrados, rectángulos, rombos y… ¡óvalos! Y además hacemos dibujos con ellos… la cabeza es un círculo, los brazos y las piernas son rectángulos, los pies triángulos…

Después aparecen otras figuras como los romboides, los trapecios, los trapezoides (que son algo así como los que no son nada de todo lo de antes)… hablamos de polígonos, y hacemos clasificaciones de todos ellos distinguiendo entre triánguloscuadriláteros (y dentro de éstos paralelogramos, trapecios…)… aparecen los polígonos regulares de más de cuatro lados… y empezamos a calcular áreas y perímetros de todos ellos.

En fin, que parece que la cosa se va complicando, sobre todo si nos hemos perdido por el camino.

En ese mundo que se va levantando a nuestro alrededor la figura de los triángulos toma un papel destacado y, además, decimos que hay triángulos equiláterosisósceles, escalenos, y también acutángulos, obtusángulos y… ¡rectángulos!

Sí… ¡rectángulos! (con exclamación) porque nos van a dar mucho juego. Buena culpa de ello la tiene la aparición estelar de… ¡El Teorema de Pitágoras!

Ese que dice que en todo triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo, sobre el que está tumbado el hipopótamo del dibujo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).

c2 = a2 + b2

hippopotenuse

Leer más«Truco» para las razones trigonométricas de ángulos notables

Valor absoluto… ¡con grupo sanguíneo negativo!

valorabsoluto

Traducción:

(Banco de sangre)

¡Eso es imposible! ¡No puedo tener un grupo sanguíneo negativo!

Leer másValor absoluto… ¡con grupo sanguíneo negativo!

Vera, a ver si sabes decirme…

– Vera, a ver si sabes decirme qué es lo que voy a dibujar…

pizarra_01

– ¡Es un punto!

– Espera, que aún no he terminado de dibujar…

Leer másVera, a ver si sabes decirme…

Regla de tres.

Regla de 3

La regla de tres o regla de tres simple es una forma de resolver problemas de proporcionalidad entre tres valores conocidos y una incógnita, estableciendo una relación de proporcionalidad entre todos ellos.

Es decir, lo que se pretende con ella es hallar el cuarto término de una proporción conociendo los otros tres.

Leer másRegla de tres.

Demostración ¡hidráulica! del Teorema de Pitágoras

El tan conocido Teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).

Cada uno de los sumandos representa el área de un cuadrado de lados c, a y b, respectivamente. Así que, la expresión anterior se puede plantear en términos de áreas de la forma siguiente:

Leer másDemostración ¡hidráulica! del Teorema de Pitágoras

1+2+3+4+5+…+100

¿Cuánto vale la siguiente suma?

1 + 2 + 3 + 4 + 5 + … + 100 = ________

Para responder a la pregunta, lo primero que se nos puede ocurrir es ir sumando uno a uno cada número; En total realizaríamos 99 sumas para llegar a la solución, mentalmente o con la ayuda de una calculadora (en general, hay que reconocer que nos cuesta bastante hacer cálculos mentales).

Antes de seguir, ya sé que muchas y muchos habrán dicho: ¡Qué barbaridad! ¡No hace falta hacer tantas sumas! ¡Con lo que yo sé de matemáticas lo hago mucho más rápido!… cuento con ello, pero como no todo el mundo tiene porque saberlo y, precisamente, de eso trata en buena parte este blog, de «acercar» lo que se tenía muy lejano o simplemente no se conocía, permitidme que no desvele tan rápido el misterio que tantos ya conocen.

En 1786, en una clase de Aritmética de tercero de primaria, un maestro rural llamado Büttner pidió a sus alumnos que hallaran la suma de los 100 primeros números (la pregunta con la que hemos empezado esta entrada). Un alumno de esa clase llamado Carl Friedrich Gauss, que entonces tenía 9 años, halló la respuesta correcta en muy poco tiempo, diciendo «Ligget se’» («ya está»). Al acabar la hora se comprobaron las soluciones y se vio que la solución de Gauss era correcta, mientras que no lo eran muchas de las de sus compañeros.

Leer más1+2+3+4+5+…+100

La Pirámide de Keops y el Teorema de Tales

Pirámide de Keops

Cuenta la historia que un sacerdote egipcio le preguntó a Tales de Mileto (s. IV a. C) acerca de la altura de la Pirámide de Keops, cuando ya las pirámides rondaban los 2.000 años de edad, y éste respondió con un método de lo más ingenioso para medir dicha altura.

Leer másLa Pirámide de Keops y el Teorema de Tales

A %d blogueros les gusta esto: